数据清洗之统一输入

Kaggle: Data Cleaning Challenge: Inconsistent Data Entry

使用unique方法,可以查看某列中所有的唯一值数据。

cities = suicide_attacks['City'].unique()
# sort them alphabetically and then take a closer look
cities.sort()
cities

由于大小写和空格的问题,实际同一含义的字符串,被识别成了多个。我只是粗略的看了一下就能发现很多。因此接下来需要做的就是统一大小并且清楚掉这些多余的空格。

统一大小写

suicide_attacks['City'] = suicide_attacks['City'].str.lower()
# 统一转为小写字母

清除空格

suicide_attacks['City'] = suicide_attacks['City'].str.strip()

经过以上两步可以明显看到唯一值数量上有减少,那些因为大小写和空格问题带来的唯一值都被去掉了。

还没有到此为止哦,经过统一大小写和清除空格的数据中还存在着一些不安分因子,比如下图中圈出的d. i khand.i khan,空格出现在了中间,两者的相似度非常高。

目前的数据量较小,我们可以人工识别处理,但当数量达到千万级别时,这时候就需要借助python的第三方库 fuzzywuzzy来实现模糊匹配。

模糊匹配

导入库和模块

from fuzzywuzzy import process
from fuzzywuzzy import fuzzy

extract方法返回模糊匹配的字符串和相似度

cities = suicide_attacks['City'].unique()
process.extract('d.i khan', cities, limit=10, scorer=fuzzy.token_sort_radio)

接下来只需要替换掉匹配率>90%的数据就可以了(至于为什么匹配率选了90%,小杨推测笔者的意思是88%匹配度对应的d.g khan和原数据无任何关联,所以概率肯定是在88%以上,取整就是90%?)

通用的“替换”方法

笔者写了一个通用的方法,可以用于替换数据表格中某一列

def replace_matches_in_column(df, column, string_to_match, min_ratio = 90):
    # get a list of unique strings
    strings = df[column].unique()
    
    # get the top 10 closest matches to our input string
    matches = fuzzywuzzy.process.extract(string_to_match, strings, limit=10, scorer=fuzzywuzzy.fuzz.token_sort_ratio)

    # only get matches with a ratio > 90
    close_matches = [matches[0] for matches in matches if matches[1] >= min_ratio]

    # get the rows of all the close matches in our dataframe
    rows_with_matches = df[column].isin(close_matches)

    # replace all rows with close matches with the input matches 
    df.loc[rows_with_matches, column] = string_to_match
    
    # let us know the function's done
    print("All done!")
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345