订单表大数据处理实战

前言:

也许大数据,大并发,大流量在许多coder中还是一个比较遥远的事情。碰巧我最近经手的一个项目就有着大数据的问题(一天100w条数据左右)虽说不能算超级大,也算是需要做些特殊处理才能应付。
首先交代下背景:
首先大数据的表是一张订单表,订单表中有,交易金额,收益等字段,需要在后台做三种以上的统计

  1. 今日统计
  2. 昨日统计
  3. 累计统计

在这样大数据出现之前,使用的解决方案一直是将订单全部存在一张表里。然后统计的时候,就直接查询全表,做聚合查询。
这样处理在数据量不大的情况下确实是没问题,只是在新的订单量迅速增大,对数据表的读写和统计都有不小的挑战!

1. 水平分表

首先从数据表入手,经过我们思考,我们选择对数据表分表。分表的时机为按量分表,比如我们发现,订单表马上要到500w数据时,我们就新建下一张订单表(当然这是自动的)

这样做的好处就是,数据表的读取性能会比较好,而且不会在数据超级大的时候发生写入挂起的情况。始终让订单表处于一个高性能的状态。

当启用新表时,我们相应的创建订单方法和修改订单方法也要随着改变,要对新的数据表进行操作,这里就涉及到我上一篇文章《模型初始化踩坑记》 这里就不再赘述了。

2. 停机统计

搞定了对订单的新增和修改,就来到了本次项目的难点了,那就是对订单的统计。也是进过了很久的思考与讨论。发现我们的订单统计有一个特点:那就是很多地方都需要全表统计。如果我们先分表,然后再连表查询,这无疑就是脱了裤子。。。
那么经过我们的套路,我们设想出一套机制

停机统计机制流程图

这样做的目的是为了将一天的订单分为两个部分,一个是8:30之前,一个是8:30之后的。这样就可以很好的规避数据表切换导致的统计漏掉。这样每天只统计今日0 ~ 8:30和昨日8:30 ~ 23:59。通过计算,就可以得到昨日的统计,累计的统计(截止于今日8:30)

3.结合停机统计的实时统计

那么有人可能会问,那么8:30之后的订单如何统计呢?当然,我这里的机制最多能统计到当日8:30的数据,有很多的数据需要时效性,也就是实时的反应出订单的数据。那么这里我就要介绍第二套机制

实时统计流程图

根据当前时间的判断,走向两个case,拿到停机时段的统计数据,再结合,实时统计的数据。就可以得到完整的统计订单数据。虽然这个步骤看上去有些复杂。这就像是压缩文件,当你压缩一个1b的文件时,压缩出了70几b的压缩包。当我们的订单数据达到了1000w,甚至更多。那种看似简单的只统计聚合查询订单表便变得非常的慢。这一套逻辑虽然查询次数多一些。但是查询速度会有一个上限。这个上限就是我们切换数据表。随后读取的就是新的数据表,速度会非常快。
如果使用实时查询订单表,开始订单不多的时候,会很快。当订单越来越多时。查询速度会呈正函数形式向上递增。

本次介绍,主要是介绍一个思路。如果有更好的思路欢迎大家交流。由于涉及公司业务,代码就不便展示了。希望得到大神指点
谢谢

以上

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容