UDA(Unsupervised Data Augmentation 无监督数据增强)

Google在2019年提出了UDA方法(Unsupervised Data Augmentation 无监督数据增强),这是一种半监督学习方法。问世后,就击败了市面上其他的把深度半监督方法,该方法通过很少量的标记样本,便可以达到跟大数据样本一样的效果。
在UDA论文中,效果体现在IMDb数据集上,通过仅仅20个标记样本与约7万余个无标记样本(经过数据增强)的UDA算法学习,最终达到了与有2.5W标记数据集更好的效果,十分令人兴奋。

方法

image.png

损失

如上面图,损失分为两部分:标记数据的损失 和 未标记的数据的损失

  • 一部分为有标注样本的,计算交叉熵损失。 目标是最小化有标签数据的损失。


    image.png
  • 另一部分为无标签的损失

    1. 目标是什么?
      最小化无标签增广数据与无标签数据的KL散度
    2. 那么这部分无标签样本怎么得到的呢?
      2.1 通过数据增强得到,何为数据增强呢?
      数据增强就是,在样本x的标签L不变的情况下,对x进行转换,得到新的训练样本x’, 新样本x'的标签也是L。
      2.2 转换方法都有哪些?
      回译、TF-IDF word替换等等
    3. 损失定义
      新旧数据有相同的数据标签。通常为了得到的增强数据与原始数据相似,使用的是最大似然估计方法。这里采用KL散度,算两个分布的损失:


      image.png

      *最终的损失为:


      image.png

    前面部分为有标签的损失部分,后半部分为无标签增强样本损失。

训练技巧

应用

U在实际的场景下,UDA代表的半监督学习有十分广大的应用场景。例如,在某个细分领域,如金融领域,涵盖了大量的财经新闻、公司财报、法律文书、客户沟通记录等等,在该领域下没有标记的原始文本数据非常的庞大。而如果使用传统的监督学习方法,则需要十分昂贵而且专业的人员来进行数据样本的标记,这样的话,它的成本与项目进度将非常巨大与缓慢。但UDA类似的半监督学习恰好能近乎完美的解决这个问题。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容