2023年,我国AI大模型行业规模已达到147亿元人民币(前瞻产业研究院 数据)。AI大模型的行业应用及技术进步能有效提升各行业生产要素的产出效率并提高了数据要素在生产要素组合中的地位。供给方面,当前AI大模型企业主要通过深化通用大模型能力或者打造垂类行业大模型两种路径为下游行业提供AI大模型应用服务,商业模式则较为灵活且多元化;需求方面,企业需求特征表现为满足可落地的前提下实现价格、私密安全性和大模型能力效果的三者平衡,因此大部分的规模企业用户主要选择参数规模在100~200亿之间的AI大模型和本地化部署的落地方式。
应用现状,大模型赋能场景包括一般通用业务场景和行业应用场景。截至2023年,我国大模型在各垂类应用行业中,金融、政府、影视游戏和教育领域是大模型渗透率最高的四大行业,渗透率均超过50%。电信、电子商务和建筑领域的应用成熟度较高。
面临的痛点,首先是基础算力不足;其次是数据获取成本高;三是人才不足;四是潜在法规风险;五是市场认知不准确。
AI大模型是技术驱动的行业,且仍具有巨大的挖掘潜力、技术更新进步速度也较快,行业技术能力拓展上限尚未出现。
行业发展的七大趋势,一是技术趋势,具备强大预测能力的预测大模型、强大决策能力的决策大模型和能够自主学习、实时交互的具身智能大模型最有可能成为继自然语言大模型和多模态大模型后的下一个大模型行业封口;二是竞争趋势,AI大模型企业需将资源局较单一发展路径,行业竞争将开始分化;三是应用场景趋势,行业应用场景数量也将爆炸性的多元化增长,且会逐渐从当前的业务类场景向决策管理场景深入;四是应用行业趋势,前期信息化基础较好,对新兴技术接受度支付意愿也高的金融、电商、教育和医疗领域是未来五年AI大模型应用潜力最高的四大下游行业领域;五是AI大模型的应用将反哺基础科学技术的发展;六是AI大模型将轻量化发展助力终端智能化;七是基础AI通用大模型将开源化赋能构建国产软件生态。
针对AI大模型行业应用的四大发展建议,一是牢守安全底线、放开政策监管力度,为行业创新发展打开政策空间;二是延续传统高效的商业化应用优势,加快AI大模型应用落地;三是打造开源生态,促进产业整体快速发展;四是加快人才培养,做好人才储备工作。针对AI大模型行业应用企业的三大发展策略,一是脱虚向实,谨防陷入“模型”规模之争;二是加强企业合作,做大行业蛋糕是当前首要任务;三是关注细分行业机会,寻求差异化竞争优势。
(来自前瞻产业研究院《2024年中国AI大模型场景探索及产业应用调研报告》)