8.3凝聚层次聚类

有两种产生层次聚类的基本方法

凝聚的:从点作为个体簇开始,每一步合并两个最接近的簇。这需要定义簇的邻近性概念。

分裂的:从包含所有点的某个簇开始,每一步分裂一个簇,知道仅剩下单点簇。在这种情况下, 我们需要确定每一步分裂哪个簇,以及如何分类。

凝聚层次聚类技术最为常见,我们先关注这类方法。

层次聚类常常使用树状图的类似于树的图显示。该图显示簇——子簇练习和簇合并(凝聚)或分裂的次序。

基本凝聚层次聚类算法

从个体点作为簇开始,相继合并两个最接近的簇,只到只剩下一个簇


1:如果需要,计算邻近度矩阵

2:repeat

3:合并最接近的两个簇

4:更新邻近性矩阵,以反映新的簇与原来的簇之间的邻近性

5:until 仅剩下一个簇


1.定义簇之间的邻近性

算法的关键操作是计算两个簇之间的邻近度,并且正是簇的邻近性定义区分了我们将讨论的各种凝聚层次技术。簇的邻近性通常用特定的簇类型定义:在基于邻近的簇中,每个对象到该簇某个对象的距离比到不同簇中任意点的距离更近。

许多凝聚层次聚类技术,MIN——定义簇的邻近度为不同簇的两个最近的点之间的邻近度;MAX——取不同簇中两个最远的点之间的邻近度作为簇的邻近度;组平均——定义簇邻近度取自不同簇的所有点对邻近度的平均值(平均边长)

也可以取基于原型的观点,簇用质心代表,定义为簇质心之间的邻近度。

另一种方法——Ward,簇使用质心代表,使用合并两个簇导致的SSE增加来度量两个簇之间的邻近性。Ward与K-means一样视图最小化点到簇质心的距离平方和。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • 一、基本凝聚层次聚类 凝聚是指,算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇。步骤如下: a)计算邻近...
    pengfghg阅读 2,371评论 1 0
  • 参考自初识聚类算法:K均值、凝聚层次聚类和DBSCAN,模糊聚类FCM算法。 聚类的目的 将数据划分为若干个簇,簇...
    胡哈哈哈阅读 4,112评论 0 16
  • 一、概述 (1)聚类分析 目标是,分组数据使得,组内的对象是相似的(相关的),不同组是不同的(不相关的)。 (2)...
    longgb246阅读 5,555评论 0 3
  • 前言 其实读完斯坦福的这本《互联网大规模数据挖掘》,让我感觉到,什么是人工智能?人工智能就是更高层次的数据挖掘。机...
    我偏笑_NSNirvana阅读 12,494评论 1 23
  • 单选题 1. 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?(A) A...
    山的那边是什么_阅读 33,420评论 2 59