学习小组Day6笔记--axin

安装加载dplyr包

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
library(dplyr)  #require(dplyr)也可

注:R包安装命令是install.packages(“包”)或者BiocManager::install(“包”)。取决于你要安装的包存在于CRAN网站还是Biocductor。存在于哪可以用谷歌搜。

示例数据

test <- iris[c(1:2,51:52,101:102),]

基础函数

1.mutate(),新增列

mutate(test, new = Sepal.Length * Sepal.Width)

2.select(),按列筛选

(1)按列号筛选

select(test,1)

(2)按列名筛选

aselect(test, Petal.Length, Petal.Width)

b

vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))

注:ab两种方法运行结果一致。

3.filter()筛选行

filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )

> filter(test, Species %in% c("setosa","versicolor"))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.1         3.5          1.4         0.2     setosa
2          4.9         3.0          1.4         0.2     setosa
3          7.0         3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor

注:选两种species。

4.arrange(),按某1列或某几列对整个表格进行排序

arrange(test, Sepal.Length)#默认按Sepal.Length从小到大排序
arrange(test, desc(Sepal.Length))#用desc按Sepal.Length从大到小

5.summarise():汇总

summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差

#先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

6:管道操作 %>% (按cmd/ctr + shift + M出现)

test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))

注:a.与5结果一致。
b.加载任意一个tidyverse包即可用管道符号。

7:count统计某列的unique值

> count(test,Species)
# A tibble: 3 x 2
  Species        n
  <fct>      <int>
1 setosa         2
2 versicolor     2
3 virginica      2

注:统计test数据框的Species列有哪些取值,每个取值重复了多少次。

8.连接表格

(0)建立表格

options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)

(1)內连inner_join,取交集

inner_join(test1, test2, by = "x")
两个表格的x的交集

(2)左连left_join

left_join(test1, test2, by = 'x')
test1全在,补上test2的y列
left_join(test2, test1, by = 'x')
test2全在,补上test1的z列

(3)全连full_join

full_join( test1, test2, by = 'x')

(4)半连接:返回能够与test2表匹配的test1表所有记录semi_join

semi_join(x = test1, y = test2, by = 'x')
注:
a.比inner_join结果少了y列
b.主体是test1

(5)反连接:返回无法与test1表匹配的test2表的所有记录anti_join

anti_join(x = test2, y = test1, by = 'x')
注:
a.full_join的下半部分
b.主体是test2

(6)简单合并

> bind_rows(test1, test2)
  x  y
1 1 10
2 2 20
3 3 30
4 4 40
5 5 50
6 6 60

bind_rows()函数:加上几行信息,需要两个表格列数相同

> bind_cols(test1, test3)
  x  y   z
1 1 10 100
2 2 20 200
3 3 30 300
4 4 40 400

bind_cols()函数:添加列,需要两个表格行数相同
注:在相当于base包里的cbind()函数和rbind()函数。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342