2018-12-20 java集合框架

1.哈希表

1.哈希表简介

哈希表,又叫散列表,是根据关键值码值(key value)来直接访问的数据结构,它可以通过把key值映射到表当中的某个位置来,来快速的查找可以值对应的value,好像有点抽象,举个简单的例子:某个学校有10000个学生,某个学生的学号是key=10000(散列地址),value=小明,校长要查找出小明(假设小明这个名字是唯一的)同学,一个一个的查找太费事,他可以通过key=10000,直接定位到小明所在的班级照找到小明,效率提高了许多。

2.哈希表的创建方式

1.直接定值法:
取关键字key的某个线性函数为散列地址,如Hash(key) = key 或 Hash(key) = A*key+B;A,B为常数
2.除留取余法:
关键值除以比散列表长度小的素数,获得的值作为散列表的地址值,即Hash(key)=key%p, p是比散列表长度小的一个素数.

3.哈希冲突

尽管有这么多的方法,但是不同的key值任然会出现映射到同一个散列地址上的情况,这样就会造成哈希冲突。
1、线性探测:当不同的key值通过哈希函数映射到同一散列地址上时,检测当前地址的下一个地址是否可以插入,如果可以的话,就存在当前位置的下一个地址,否则,继续向下一个地址寻找,地址++。

2、二次探测:是针对线性探测的一个改进,线性探测后插入的key值太集中,这样造成key值通过散列函数后还是无法正确的映射到地址上,太集中也会造成查找、删除时的效率低下。因此,通过二次探测的方法,取当前地址加上i^2,可以取到的新的地址就会稍微分散开。

3.当用线性探测和二次探测时,总是在一个有限的哈希表中存储数据,当数据特别多时,效率就比较低。因此采用拉链法(桶)的方式来降低哈希冲突.将所有关键字为同义词的记录存储在同一线性链表中。

4.还有一种情况是,当一个链上链的数据过多时,我们可以采用红黑树的方式来降低高度,保持平衡且不至于过载。

2.HashMap 简介

HashMap 主要用来存放键值对,它基于哈希表的Map接口实现,是常用的Java集合之一。
JDK1.8之前,hashMap的底层是基于数组+链表的,数组是HashMap 的主体,链表是为了解决哈希冲突而存在的,在JDK1.8之后解决哈希冲突有了新的方法,当链表长度大于阈值(链表上的数据,默认是8)时,链表自动转换为红黑树,以减少索引时间。

1.底层数据结构分析

JDK1.8之前

HashMap底层是采用数组+链表的形式结合的,也就是链表散列,HashMap通过key值的HashCode,经过扰动函数处理之后得到哈希值(hash值),然后通过(n-1)&hash判断当前元素的存储位置。如果当前位置没值就直接覆盖,如果当前位置有值,就使用拉链法解决。

扰动函数是指HashMap的hash()函数,
JDK1.8源代码如下:

    static final int hash(Object key) {
      int h;
      // key.hashCode():返回散列值也就是hashcode
      // ^ :按位异或
      // >>>:无符号右移,忽略符号位,空位都以0补齐
      return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

所谓 “拉链法” 就是:将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

[
jdk1.8之前的内部结构

]

JDK1.8之后

相比于之前的版本,jdk1.8在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为8)时,将链表转化为红黑树,以减少搜索时间。

loadFactor加载因子

loadFactor加载因子是控制数组存放数据的疏密程度,loadFactor越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,load Factor越小,也就是趋近于0,

loadFactor太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor的默认值为0.75f是官方给出的一个比较好的临界值。  

threshold

threshold = capacity * loadFactor,当Size>=threshold的时候,那么就要考虑对数组的扩增了,也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。

3.hashMap源码分析

1.构造函数

图片.png
// 默认构造函数。
    public More ...HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted
     }
     
     // 包含另一个“Map”的构造函数
     public More ...HashMap(Map<? extends K, ? extends V> m) {
         this.loadFactor = DEFAULT_LOAD_FACTOR;
         putMapEntries(m, false);//下面会分析到这个方法
     }
     
     // 指定“容量大小”的构造函数
     public More ...HashMap(int initialCapacity) {
         this(initialCapacity, DEFAULT_LOAD_FACTOR);
     }
     
     // 指定“容量大小”和“加载因子”的构造函数
     public More ...HashMap(int initialCapacity, float loadFactor) {
         if (initialCapacity < 0)
             throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
         if (initialCapacity > MAXIMUM_CAPACITY)
             initialCapacity = MAXIMUM_CAPACITY;
         if (loadFactor <= 0 || Float.isNaN(loadFactor))
             throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
         this.loadFactor = loadFactor;
         this.threshold = tableSizeFor(initialCapacity);
     }

2.put方法

HashMap只提供了put用于添加元素,putVal方法只是给put方法调用的一个方法,并没有提供给用户使用。

对putVal方法添加元素的分析如下:

①如果定位到的数组位置没有元素 就直接插入。
②如果定位到的数组位置有元素就和要插入的key比较,如果key相同就直接覆盖,如果key不相同,就判断p是否是一个树节点,如果是就调用e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value)将元素添加进入。如果不是就遍历链表插入。

4.LinkedList

LinkedList是一个实现了List接口与Deque接口的双向链表类,LinkedList的层是链表,所以可以快速的实现插入与删除操作。另外它实现了Deque接口,使得LinkedList类也具有队列的特性; LinkedLIst不是想线程安全的,如果要让他变成线程安全的,可以使用Collections的synchronizedList方法Collections.synchronizedList(linkedList);

Collection与Collections的区别
Collection是java.util下的接口,是所有集合类的顶层父类(Map除外)
Collections是java.util下的类,他包含各种有关集合操作 的静态方法。
图片.png

LinkedList源码分析

构造方法

空构造方法:

    public LinkedList() {
    }

用已有的集合创建链表的构造方法:

    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }

add方法

add(E e) 方法:将元素添加到链表尾部

public boolean add(E e) {
        linkLast(e);//这里就只调用了这一个方法
        return true;
    }
   /**
     * 链接使e作为最后一个元素。
     */
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;//新建节点
        if (l == null)
            first = newNode;
        else
            l.next = newNode;//指向后继元素也就是指向下一个元素
        size++;
        modCount++;
    }

add(int index,E e):在指定位置添加元素

public void add(int index, E element) {
        checkPositionIndex(index); //检查索引是否处于[0-size]之间

        if (index == size)//添加在链表尾部
            linkLast(element);
        else//添加在链表中间
            linkBefore(element, node(index));
    }

linkBefore方法需要给定两个参数,一个插入节点的值,一个指定的node,所以我们又调用了Node(index)去找到index对应的node

addAll(Collection c ):将集合插入到链表尾部

public boolean addAll(Collection<? extends E> c) {
        return addAll(size, c);
    }

addAll(int index, Collection c): 将集合从指定位置开始插入

public boolean addAll(int index, Collection<? extends E> c) {
        //1:检查index范围是否在size之内
        checkPositionIndex(index);

        //2:toArray()方法把集合的数据存到对象数组中
        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;

        //3:得到插入位置的前驱节点和后继节点
        Node<E> pred, succ;
        //如果插入位置为尾部,前驱节点为last,后继节点为null
        if (index == size) {
            succ = null;
            pred = last;
        }
        //否则,调用node()方法得到后继节点,再得到前驱节点
        else {
            succ = node(index);
            pred = succ.prev;
        }

        // 4:遍历数据将数据插入
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            //创建新节点
            Node<E> newNode = new Node<>(pred, e, null);
            //如果插入位置在链表头部
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }

        //如果插入位置在尾部,重置last节点
        if (succ == null) {
            last = pred;
        }
        //否则,将插入的链表与先前链表连接起来
        else {
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }    

上面可以看出addAll方法通常包括下面四个步骤:

  1. 检查index范围是否在size之内
  2. toArray()方法把集合的数据存到对象数组中
  3. 得到插入位置的前驱和后继节点
  4. 遍历数据,将数据插入到指定位置

addFirst(E e): 将元素添加到链表头部

 public void addFirst(E e) {
        linkFirst(e);
    }
private void linkFirst(E e) {
        final Node<E> f = first;
        final Node<E> newNode = new Node<>(null, e, f);//新建节点,以头节点为后继节点
        first = newNode;
        //如果链表为空,last节点也指向该节点
        if (f == null)
            last = newNode;
        //否则,将头节点的前驱指针指向新节点,也就是指向前一个元素
        else
            f.prev = newNode;
        size++;
        modCount++;
    }

addLast(E e): 将元素添加到链表尾部,与 add(E e) 方法一样

public void addLast(E e) {
        linkLast(e);
    }

根据位置取数据的方法

get(int index)::根据指定索引返回数据

public E get(int index) {
        //检查index范围是否在size之内
        checkElementIndex(index);
        //调用Node(index)去找到index对应的node然后返回它的值
        return node(index).item;
    }

获取头节点(index=0)数据方法:

public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }
public E element() {
        return getFirst();
    }
public E peek() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }

public E peekFirst() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
     }

区别: getFirst(),element(),peek(),peekFirst() 这四个获取头结点方法的区别在于对链表为空时的处理,是抛出异常还是返回null,其中getFirst()element() 方法将会在链表为空时,抛出异常

element()方法的内部就是使用getFirst()实现的。它们会在链表为空时,抛出NoSuchElementException 获取尾节点(index=-1)数据方法:

 public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }
 public E peekLast() {
        final Node<E> l = last;
        return (l == null) ? null : l.item;
    }

两者区别: getLast() 方法在链表为空时,会抛出NoSuchElementException,而peekLast() 则不会,只是会返回 null

根据对象得到索引的方法

int indexOf(Object o): 从头遍历找

public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
            //从头遍历
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
            //从头遍历
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }

int lastIndexOf(Object o): 从尾遍历找

public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            //从尾遍历
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
            //从尾遍历
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }

检查链表是否包含某对象的方法:

contains(Object o): 检查对象o是否存在于链表中

 public boolean contains(Object o) {
        return indexOf(o) != -1;
    }

删除方法 remove() ,removeFirst(),pop(): 删除头节点

public E pop() {
        return removeFirst();
    }
public E remove() {
        return removeFirst();
    }
public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }

removeLast(),pollLast(): 删除尾节点

public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }
public E pollLast() {
        final Node<E> l = last;
        return (l == null) ? null : unlinkLast(l);
    }

区别: removeLast()在链表为空时将抛出NoSuchElementException,而pollLast()方法返回null。

remove(Object o): 删除指定元素

public boolean remove(Object o) {
        //如果删除对象为null
        if (o == null) {
            //从头开始遍历
            for (Node<E> x = first; x != null; x = x.next) {
                //找到元素
                if (x.item == null) {
                   //从链表中移除找到的元素
                    unlink(x);
                    return true;
                }
            }
        } else {
            //从头开始遍历
            for (Node<E> x = first; x != null; x = x.next) {
                //找到元素
                if (o.equals(x.item)) {
                    //从链表中移除找到的元素
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

当删除指定对象时,只需调用remove(Object o)即可,不过该方法一次只会删除一个匹配的对象,如果删除了匹配对象,返回true,否则false。

unlink(Node x) 方法:

E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;//得到后继节点
        final Node<E> prev = x.prev;//得到前驱节点

        //删除前驱指针
        if (prev == null) {
            first = next;如果删除的节点是头节点,令头节点指向该节点的后继节点
        } else {
            prev.next = next;//将前驱节点的后继节点指向后继节点
            x.prev = null;
        }

        //删除后继指针
        if (next == null) {
            last = prev;//如果删除的节点是尾节点,令尾节点指向该节点的前驱节点
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }

remove(int index):删除指定位置的元素

public E remove(int index) {
        //检查index范围
        checkElementIndex(index);
        //将节点删除
        return unlink(node(index));
    }

LinkedList类常用方法测试

package list;

import java.util.Iterator;
import java.util.LinkedList;

public class LinkedListDemo {
    public static void main(String[] srgs) {
        //创建存放int类型的linkedList
        LinkedList<Integer> linkedList = new LinkedList<>();
        /************************** linkedList的基本操作 ************************/
        linkedList.addFirst(0); // 添加元素到列表开头
        linkedList.add(1); // 在列表结尾添加元素
        linkedList.add(2, 2); // 在指定位置添加元素
        linkedList.addLast(3); // 添加元素到列表结尾
        
        System.out.println("LinkedList(直接输出的): " + linkedList);

        System.out.println("getFirst()获得第一个元素: " + linkedList.getFirst()); // 返回此列表的第一个元素
        System.out.println("getLast()获得第最后一个元素: " + linkedList.getLast()); // 返回此列表的最后一个元素
        System.out.println("removeFirst()删除第一个元素并返回: " + linkedList.removeFirst()); // 移除并返回此列表的第一个元素
        System.out.println("removeLast()删除最后一个元素并返回: " + linkedList.removeLast()); // 移除并返回此列表的最后一个元素
        System.out.println("After remove:" + linkedList);
        System.out.println("contains()方法判断列表是否包含1这个元素:" + linkedList.contains(1)); // 判断此列表包含指定元素,如果是,则返回true
        System.out.println("该linkedList的大小 : " + linkedList.size()); // 返回此列表的元素个数

        /************************** 位置访问操作 ************************/
        System.out.println("-----------------------------------------");
        linkedList.set(1, 3); // 将此列表中指定位置的元素替换为指定的元素
        System.out.println("After set(1, 3):" + linkedList);
        System.out.println("get(1)获得指定位置(这里为1)的元素: " + linkedList.get(1)); // 返回此列表中指定位置处的元素

        /************************** Search操作 ************************/
        System.out.println("-----------------------------------------");
        linkedList.add(3);
        System.out.println("indexOf(3): " + linkedList.indexOf(3)); // 返回此列表中首次出现的指定元素的索引
        System.out.println("lastIndexOf(3): " + linkedList.lastIndexOf(3));// 返回此列表中最后出现的指定元素的索引

        /************************** Queue操作 ************************/
        System.out.println("-----------------------------------------");
        System.out.println("peek(): " + linkedList.peek()); // 获取但不移除此列表的头
        System.out.println("element(): " + linkedList.element()); // 获取但不移除此列表的头
        linkedList.poll(); // 获取并移除此列表的头
        System.out.println("After poll():" + linkedList);
        linkedList.remove();
        System.out.println("After remove():" + linkedList); // 获取并移除此列表的头
        linkedList.offer(4);
        System.out.println("After offer(4):" + linkedList); // 将指定元素添加到此列表的末尾

        /************************** Deque操作 ************************/
        System.out.println("-----------------------------------------");
        linkedList.offerFirst(2); // 在此列表的开头插入指定的元素
        System.out.println("After offerFirst(2):" + linkedList);
        linkedList.offerLast(5); // 在此列表末尾插入指定的元素
        System.out.println("After offerLast(5):" + linkedList);
        System.out.println("peekFirst(): " + linkedList.peekFirst()); // 获取但不移除此列表的第一个元素
        System.out.println("peekLast(): " + linkedList.peekLast()); // 获取但不移除此列表的第一个元素
        linkedList.pollFirst(); // 获取并移除此列表的第一个元素
        System.out.println("After pollFirst():" + linkedList);
        linkedList.pollLast(); // 获取并移除此列表的最后一个元素
        System.out.println("After pollLast():" + linkedList);
        linkedList.push(2); // 将元素推入此列表所表示的堆栈(插入到列表的头)
        System.out.println("After push(2):" + linkedList);
        linkedList.pop(); // 从此列表所表示的堆栈处弹出一个元素(获取并移除列表第一个元素)
        System.out.println("After pop():" + linkedList);
        linkedList.add(3);
        linkedList.removeFirstOccurrence(3); // 从此列表中移除第一次出现的指定元素(从头部到尾部遍历列表)
        System.out.println("After removeFirstOccurrence(3):" + linkedList);
        linkedList.removeLastOccurrence(3); // 从此列表中移除最后一次出现的指定元素(从头部到尾部遍历列表)
        System.out.println("After removeFirstOccurrence(3):" + linkedList);

        /************************** 遍历操作 ************************/
        System.out.println("-----------------------------------------");
        linkedList.clear();
        for (int i = 0; i < 100000; i++) {
            linkedList.add(i);
        }
        // 迭代器遍历
        long start = System.currentTimeMillis();
        Iterator<Integer> iterator = linkedList.iterator();
        while (iterator.hasNext()) {
            iterator.next();
        }
        long end = System.currentTimeMillis();
        System.out.println("Iterator:" + (end - start) + " ms");

        // 顺序遍历(随机遍历)
        start = System.currentTimeMillis();
        for (int i = 0; i < linkedList.size(); i++) {
            linkedList.get(i);
        }
        end = System.currentTimeMillis();
        System.out.println("for:" + (end - start) + " ms");

        // 另一种for循环遍历
        start = System.currentTimeMillis();
        for (Integer i : linkedList)
            ;
        end = System.currentTimeMillis();
        System.out.println("for2:" + (end - start) + " ms");

        // 通过pollFirst()或pollLast()来遍历LinkedList
        LinkedList<Integer> temp1 = new LinkedList<>();
        temp1.addAll(linkedList);
        start = System.currentTimeMillis();
        while (temp1.size() != 0) {
            temp1.pollFirst();
        }
        end = System.currentTimeMillis();
        System.out.println("pollFirst()或pollLast():" + (end - start) + " ms");

        // 通过removeFirst()或removeLast()来遍历LinkedList
        LinkedList<Integer> temp2 = new LinkedList<>();
        temp2.addAll(linkedList);
        start = System.currentTimeMillis();
        while (temp2.size() != 0) {
            temp2.removeFirst();
        }
        end = System.currentTimeMillis();
        System.out.println("removeFirst()或removeLast():" + (end - start) + " ms");
    }
}

5.ArrayList

ArrayList底层是数组队列,相当于动态数组,与java当中的普通数组相比,他的容量可以动态的增长,在添加大量元素前,应用程序可以使用ensureCapacity操作来增加 ArrayList 实例的容量。这可以减少递增式再分配的数量。
它继承于 AbstractList,实现了 List, RandomAccess, Cloneable, java.io.Serializable 这些接口。
ArrayList实现了RandomAccess接口,这个接口在java当中专门用来被List接口实现,他的作用是实现集合的快速访问,
  ArrayList 实现了Cloneable 接口,即覆盖了函数 clone(),能被克隆。
  ArrayList 实现java.io.Serializable 接口,这意味着ArrayList支持序列化,能通过序列化去传输。
和 Vector 不同,ArrayList 中的操作不是线程安全的!所以,建议在单线程中才使用 ArrayList,而在多线程中可以选择 Vector 或者 CopyOnWriteArrayList。

(一).ArrayList核心源码

   /**
     * 默认初始容量大小
     */
    private static final int DEFAULT_CAPACITY = 10;
    

    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /**
     *默认构造函数,使用初始容量10构造一个空列表(无参数构造)
     */
    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }
    
    /**
     * 带初始容量参数的构造函数。(用户自己指定容量)
     */
    public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {//初始容量大于0
            //创建initialCapacity大小的数组
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {//初始容量等于0
            //创建空数组
            this.elementData = EMPTY_ELEMENTDATA;
        } else {//初始容量小于0,抛出异常
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }


   /**
    *构造包含指定collection元素的列表,这些元素利用该集合的迭代器按顺序返回
    *如果指定的集合为null,throws NullPointerException。 
    */
     public ArrayList(Collection<? extends E> c) {
        elementData = c.toArray();
        if ((size = elementData.length) != 0) {
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            if (elementData.getClass() != Object[].class)
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // replace with empty array.
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

以无参数构造方法创建 ArrayList 时,实际上初始化赋值的是一个空数组。当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为10。

1. 先来看 add 方法

    /**
     * 将指定的元素追加到此列表的末尾。 
     */
    public boolean add(E e) {
   //添加元素之前,先调用ensureCapacityInternal方法
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        //这里看到ArrayList添加元素的实质就相当于为数组赋值
        elementData[size++] = e;
        return true;
    }

2. 再来看看 ensureCapacityInternal() 方法

可以看到 add 方法 首先调用了ensureCapacityInternal(size + 1)

   //得到最小扩容量
    private void ensureCapacityInternal(int minCapacity) {
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
              // 获取默认的容量和传入参数的较大值
            minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
        }

        ensureExplicitCapacity(minCapacity);
    }

当 要 add 进第1个元素时,minCapacity为1,在Math.max()方法比较后,minCapacity 为10。

3. ensureExplicitCapacity() 方法

如果调用 ensureCapacityInternal() 方法就一定会进过(执行)这个方法,下面我们来研究一下这个方法的源码!

  //判断是否需要扩容
    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;

        // overflow-conscious code
        if (minCapacity - elementData.length > 0)
            //调用grow方法进行扩容,调用此方法代表已经开始扩容了
            grow(minCapacity);
    }

我们来仔细分析一下:

* 当我们要 add 进第1个元素到 ArrayList 时,elementData.length 为0 (因为还是一个空的 list),因为执行了 ensureCapacityInternal() 方法 ,所以 minCapacity 此时为10。此时,minCapacity - elementData.length > 0 成立,所以会进入 grow(minCapacity) 方法。

* 当add第2个元素时,minCapacity 为2,此时e lementData.length(容量)在添加第一个元素后扩容成 10 了。此时,minCapacity - elementData.length > 0 不成立,所以不会进入 (执行)grow(minCapacity) 方法。

* 添加第3、4···到第10个元素时,依然不会执行grow方法,数组容量都为10,直到添加第11个元素,minCapacity(为11)比elementData.length(为10)要大。进入grow方法进行扩容。

4. grow() 方法

/**
 * 要分配的最大数组大小
 */
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

/**
 * ArrayList扩容的核心方法。
 */
private void grow(int minCapacity) {
    // oldCapacity为旧容量,newCapacity为新容量
    int oldCapacity = elementData.length;
    //将oldCapacity 右移一位,其效果相当于oldCapacity /2,
    //我们知道位运算的速度远远快于整除运算,整句运算式的结果就是将新容量更新为旧容量的1.5倍,
    int newCapacity = oldCapacity + (oldCapacity >> 1);
    //然后检查新容量是否大于最小需要容量,若还是小于最小需要容量,那么就把最小需要容量当作数组的新容量,
    if (newCapacity - minCapacity < 0)
        newCapacity = minCapacity;
   // 如果新容量大于 MAX_ARRAY_SIZE,进入(执行) `hugeCapacity()` 方法来比较 minCapacity 和 MAX_ARRAY_SIZE,
   //如果minCapacity大于最大容量,则新容量则为`Integer.MAX_VALUE`,否则,新容量大小则为 MAX_ARRAY_SIZE 即为 `Integer.MAX_VALUE - 8`。
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    // minCapacity is usually close to size, so this is a win:
    elementData = Arrays.copyOf(elementData, newCapacity);
}

int newCapacity = oldCapacity + (oldCapacity >> 1),所以 ArrayList 每次扩容之后容量都会变为原来的 1.5 倍! 记清楚了!不是网上很多人说的 1.5 倍+1!

">>"(移位运算符):>>1 右移一位相当于除2,右移n位相当于除以 2 的 n 次方。这里 oldCapacity 明显右移了1位所以相当于oldCapacity /2。对于大数据的2进制运算,位移运算符比那些普通运算符的运算要快很多,因为程序仅仅移动一下而已,不去计算,这样提高了效率,节省了资源  

我们再来通过例子探究一下grow() 方法 :

当add第1个元素时,oldCapacity 为0,经比较后第一个if判断成立,newCapacity = minCapacity(为10)。但是第二个if判断不会成立,即newCapacity 不比 MAX_ARRAY_SIZE大,则不会进入 hugeCapacity 方法。数组容量为10,add方法中 return true,size增为1。
当add第11个元素进入grow方法时,newCapacity为15,比minCapacity(为11)大,第一个if判断不成立。新容量没有大于数组最大size,不会进入hugeCapacity方法。数组容量扩为15,add方法中return true,size增为11。
以此类推······

这里补充一点比较重要,但是容易被忽视掉的知识点:

java 中的 length 属性是针对数组说的,比如说你声明了一个数组,想知道这个数组的长度则用到了 length 这个属性.
java 中的 length() 方法是针对字符串说的,如果想看这个字符串的长度则用到 length() 这个方法.
java 中的 size() 方法是针对泛型集合说的,如果想看这个泛型有多少个元素,就调用此方法来查看!

5. hugeCapacity() 方法。

从上面 grow() 方法源码我们知道: 如果新容量大于 MAX_ARRAY_SIZE,进入(执行) hugeCapacity() 方法来比较 minCapacity 和 MAX_ARRAY_SIZE,如果minCapacity大于最大容量,则新容量则为Integer.MAX_VALUE,否则,新容量大小则为 MAX_ARRAY_SIZE 即为 Integer.MAX_VALUE - 8。

private static int hugeCapacity(int minCapacity) {
    if (minCapacity < 0) // overflow
        throw new OutOfMemoryError();
    //对minCapacity和MAX_ARRAY_SIZE进行比较
    //若minCapacity大,将Integer.MAX_VALUE作为新数组的大小
    //若MAX_ARRAY_SIZE大,将MAX_ARRAY_SIZE作为新数组的大小
    //MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    return (minCapacity > MAX_ARRAY_SIZE) ?
        Integer.MAX_VALUE :
        MAX_ARRAY_SIZE;
}

(二)System.arraycopy() 和 Arrays.copyOf()方法

两者联系和区别

联系:

看两者源代码可以发现 copyOf() 内部实际调用了 System.arraycopy() 方法

区别:

arraycopy() 需要目标数组,将原数组拷贝到你自己定义的数组里或者原数组,而且可以选择拷贝的起点和长度以及放入新数组中的位置 ,copyOf() 是系统自动在内部新建一个数组,并返回该数组。Array.copyOf() 用于复制指定的数组内容以达到扩容的目的,该方法对不同的基本数据类型都有对应的重载方法
arraycopy()会报数组越界异常,copyof()不会报数组越界异常,因为是新建一个数组,copyOf()是系统自动在内部新建一个数组,并返回该数组。

arrayCopy( arr1, 2, arr2, 5, 10);意思是将arr1数组里从索引为2的元素开始, 复制到数组arr2里的索引为5的位置, 复制的元素个数为10个.

package com.xd.map;

import java.util.LinkedList;

public class Test7 {    

   public static void main(String[] args) {
       
       int [] arr= {1,2,3,4,5};
       int [] arr1= {6,7,8,9};
       /**
        * 将数组arr从索引0处开始赋值到数组arr1里面的索引0处,赋值的长度是3个
        * 注意是替换,输出:1,2,3,9
        */
       System.arraycopy(arr, 0, arr1, 0, 3);
       for(int i:arr1) {
           System.out.println(i);
       }
   }
}

Arrays的copyOf()方法传回的数组是新的数组对象,所以您改变传回数组中的元素值,也不会影响原来的数组,Array.CopyOf(arr,newLength),第一个参数是要复制的数组,第二个参数是要创建的数组的长度,

package com.xd.map;
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.LinkedList;
public class Test7 {    
   public static void main(String[] args) {
       
       int [] arr= {1,2,3,4,5};
       int [] arr1= Arrays.copyOf(arr, 10);
       System.out.println(arr1.length);
       for(int i:arr1) {
           //输出1,2,3,4,5,0,0,0,0,0
           System.out.println(i);
       }
       int [] arr2=Arrays.copyOf(arr, 2);
       for(int i:arr2) {
           //输出1,2
           System.out.println(i);
       }
   }   
}

(三)ensureCapacity方法

ArrayList 源码中有一个 ensureCapacity 方法不知道大家注意到没有,这个方法 ArrayList 内部没有被调用过,所以很显然是提供给用户调用的,那么这个方法有什么作用呢?

    /**
     *  如有必要,增加此 ArrayList 实例的容量,以确保它至少可以容纳由minimum capacity参数指定的元素数。
     *
     *  @param   minCapacity   所需的最小容量
     */
    public void ensureCapacity(int minCapacity) {
        int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
            // any size if not default element table
            ? 0
            // larger than default for default empty table. It's already
            // supposed to be at default size.
            : DEFAULT_CAPACITY;

        if (minCapacity > minExpand) {
            ensureExplicitCapacity(minCapacity);
        }
    }

最好在 add 大量元素之前用 ensureCapacity 方法,以减少增量从新分配的次数,减少操作的时间。

package com.xd.map;
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;
public class Test7 {    

   public static void main(String[] args) {
       
      ArrayList arrayList=new ArrayList<>();
      Long start=System.currentTimeMillis();
      for(int i=0;i<10000000;i++) {
          arrayList.add(i);
      }
      Long end=System.currentTimeMillis();
      //使用动态扩容花费的时间5408s
      System.out.println("使用动态扩容花费的时间"+(end-start)+"s");
      System.out.println("********************************************************");
      start=System.currentTimeMillis();
      //如果要添加大量的元素最好提前指定容量的大小,尽量减少增量重新分配的次数
      arrayList.ensureCapacity(10000000);
      for(int i=0;i<10000000;i++) {
          arrayList.add(i);
      }
      end=System.currentTimeMillis();
      //使用ensureCapacity花费的时间2122s
      System.out.println("使用ensureCapacity花费的时间"+(end-start)+"s");
   }
}

通过运行结果,我们可以很明显的看出向 ArrayList 添加大量元素之前最好先使用ensureCapacity 方法,以减少增量从新分配的次数

(三)toArray()方法

将集合转换为,注意通过toArray()方法调用了 System.arraycopy(elementData, 0, result, 0, size);有参数的toArray()方法在内部利用反射,根据参数数据的类型,创造了一个与参数数组一致的,大小为ArrayList的size()的数组,虽然返回值任然是Object []的,但是由于参数类型与要转换的参数类型一致,所以不会报异常。

ArrayList的两个toArray()方法的源代码:

public Object[] toArray() {
    Object[] result = new Object[size];
    System.arraycopy(elementData, 0, result, 0, size);
    return result;
}


public Object[] toArray(Object a[]) {
    if (a.length < size)
        a = (Object[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), size);
    System.arraycopy(elementData, 0, a, 0, size);
    if (a.length > size)
        a[size] = null;
    return a;
}
如果要把一个List直接转化为Object数组,则可以直接使用Object[] o = list.toArray();

如果要转化为String数组,则有以下两种方式:

方法一、String[]  arr = new String[list.size];  list.toArray(arr);//此时arr就有了list中的值了

方法二、String[] arr = (String[])list.toArray(new String[0]);

注意为什么String[] arr = (String[])list.toArray()会报错呢?,这是因为在强制转换的时候,此处是将多个对象同时转换为了String,但是在java当中只有一个一个对象的转换,故报错,可以使用如下的方法一个一个的转换

ArrayList list = new ArrayList();
list.add(new Person());
list.add(new Person());
list.add(new Person());
//这里不需要转型,也不能使用转型
Object[] ss = list.toArray();
//这里可以进行转型,取出原ArrayList里面存放的对象
for (int i = 0; i < ss.length; i++){
Person person= (Person) ss[i];
System.out.println(person);
}

ArrayList常用方法demo

package com.xd.map;

import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

public class Test7 {    

   public static void main(String[] args) {
       
      List<Integer> list=new ArrayList<>();
      
      System.out.println("添加元素之前的数组大小是:"+list.size());
      list.add(1);
      list.add(3);
      list.add(5);
      list.add(7);
      list.add(9);
      System.err.println(list);
      System.out.println("添加元素之后的数组大小是:"+list.size());
      /********************************遍历数组**********************************/
      Iterator<Integer> iterator=list.iterator();
      while(iterator.hasNext()) {
          System.out.println(iterator.next());
      }
      System.out.println("-----------------------------------------------");
      for(Integer it:list) {
          System.out.println(it);
      }
      System.out.println("--------------------------------------------------");
      for(int i=0;i<list.size();i++) {
          System.out.println(list.get(i));
      }
      
      
      System.out.println("***************************集合转换为数组***********************************");
      
      //将list集合copy一份复制给it数组
      Integer [] it=list.toArray(new Integer[0]);
      //方法二
      Integer [] it1=new Integer[list.size()];
      list.toArray(it1);
      
      // 在指定位置添加元素
      list.add(2,2);
      System.out.println(list);
      // 删除指定位置上的元素
      list.remove(1);
      System.out.println(list);
      // 删除指定元素
      list.remove((Object)9);
      System.out.println(list);
      // 判断arrayList是否包含5
      System.out.println("ArrayList contains 5 is: " + list.contains(5));

      // 清空ArrayList
      list.clear();
      // 判断ArrayList是否为空
      System.out.println("ArrayList is empty: " + list.isEmpty());
   }
}
   
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容