63.合理使用预训练网络-2

63.1 目标检测中如何从零开始训练

结合FAIR相关的研究,可以了解目标检测和其他任务从零训练模型一样,只要拥有足够的数据以及充分而有效的训练,同样能训练出不亚于利用预训练模型的检测器。这里提供如下几点建议:
1、数据集不大时,同样需要进行数据集增强。
2、预训练模型拥有更好的初始化,train from scratch需要更多的迭代次数以及时间训练和优化检测器。而二阶段模型由于并不是严格的端对端训练,此时可能需要更多的迭代次数以及时间,而一阶段检测模型训练会相对更容易些(例如DSOD以ScratchDet及)。
3、目标检测中train from scratch最大的问题还是batch size过小。所以可采取的策略是增加GPU使用异步batchnorm增大batch size,若条件限制无法使用更多GPU时,可使用groupnorm代替batchnorm
4、由于分类模型存在对多目标的捕捉能力弱以及对物体空间位置信息不敏感等问题,可借鉴DetNet训练一个专属于目标检测的模型网络,增强对多目标、尺度和位置拥有更强的适应性。

63.2 不同的数据集特性下如何微调

  • 数据集数据量少,数据和原数据集类似。这是通常做法只需修改最后的输出层,训练即可,训练过多参数容易过拟合。
  • 数据集数据量少,数据和原数据集差异较大。由于数据差异较大,可以在完成输出顶层的微调后,微调顶层往下一半的层数,进行微调。
  • 数据集数据量大,数据与原数据集差异较大。这种情况下,通常已经不需要用预训练模型进行微调,通常直接重新训练即可。
  • 数据集数据量大,数据与原数据类似。这时预训练模型的参数是个很好的初始化,可利用预训练模型放开所有层以较小的学习率微调即可。

63.3 目标检测中使用预训练模型的优劣?

  • 目标检测中无论是一阶段的YOLO、SSD或者RetinaNet 还是二阶段的Faster R-CNN、R-FCN 和 FPN都是基于ImageNet上预训练好的分类模型。
  • 优势在于:
    1、正如大部分微调的情况一样,使用预训练网络已拥有优秀的语义特征,能有效的加快训练速度;
    2、其次,对于大部分二阶段的模型来说,并未实现严格意义上的完全端对端的训练,所以使用预训练模型能直接提取到语义特征,能使两个阶段的网络更容易实现模型的优化。
  • 劣势在于,分类模型和检测模型之间仍然存在一定任务上的差异:
    1、分类模型大部分训练于单目标数据,对同时进行多目标的捕捉能力稍弱,且不关注目标的位置,在一定程度上让模型损失部分空间信息,这对检测模型通常是不利的;
    2、域适应问题,若预训练模型(ImageNet)和实际检测器的使用场景(医学图像,卫星图像)差异较大时,性能会受到影响;
    3、使用预训练模型就意味着难以自由改变网络结构和参数限制了应用场合。

大数据视频推荐:
网易云课堂
CSDN
人工智能算法竞赛实战
AIops智能运维机器学习算法实战
ELK7 stack开发运维实战
PySpark机器学习从入门到精通
AIOps智能运维实战
腾讯课堂
大数据语音推荐:
ELK7 stack开发运维
企业级大数据技术应用
大数据机器学习案例之推荐系统
自然语言处理
大数据基础
人工智能:深度学习入门到精通

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容