用Python深入理解跳跃表原理及实现

最近看 Redis 的实现原理,其中讲到 Redis 中的有序数据结构是通过跳跃表来进行实现的。第一次听说跳跃表的概念,感到比较新奇,所以查了不少资料。其中,网上有部分文章是按照如下方式描述跳跃表的:

image

这种描述便于理解,很容易让人理解到跳跃表是建立了类似索引的东西,从而提高效率的。但是,这样描述给人的感觉是,数据有多份存储,每份数据有两个指针,指向下层数据的指针和指向右面数据的指针。然而实际并不是这样的,实际的数据结构如下:

image

即:并非由多份数据,而是每份数据有多层指针。

那么,什么是跳跃表,跳跃表有什么特点呢?

  • Skip lists are data structures that use probabilistic balancing rather than strictly enforced balancing. As a result, the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees.

从定义中可以看出,跳跃表是为了解决平衡树插入或者删除操作过于复杂而进行设计的。的确,平衡树在插入或者删除时,需要维持平衡而进行过多的操作,学过数据结构的同学想到平衡树、红黑树等都不寒而栗吧。而跳跃表则没有这种问题,采用了随机的思想简化了维持平衡的过程,而保持查找的时间复杂度依旧是O(log N)。

跳跃表有如下特点:

(1) 每个跳跃表由很多层结构组成;

(2) 每一层都是一个有序链表,且第一个节点是头节点;

(3) 最底层的有序链表包含所有节点;

(4) 每个节点可能有多个指针,这与节点所包含的层数有关;

(5) 跳跃表的查找、插入、删除的时间复杂度均为O(log N)。

从上面的结构也可以看出,跳跃表的核心思想就是,每一个节点既包含指向下一个节点的指针,也可能包含很多个指向后续节点的指针,这样在查找、插入、删除某个节点的过程中,可以避免一些不必要的节点,从而提高效率。

所以,每个节点的数据结构设计如下:

image

跳跃表的设计如下:

image

那么,如何进行查找呢?

假设查找5,那么在查找的过程中,需要从最高层开始查找(毕竟,越高层越表示索引嘛,很可能一下子就找到数据了),如果元素小于5,则一直向右查找。若遇到大于5的,则降低一层,在下一层继续查找。查找的流程如下图所示:

image

查找的代码如下:

image

插入的过程是怎么样的呢?

插入的过程包括如下4个步骤:

1、首先,需要找到每一层要插入节点的位置,并保存(用于后续调整指针);

2、确定该节点包含的层数,初始化要插入的节点;

3、相关的指针的调整;

4、若跳跃表层数增加,需要调整Header节点。

如下图,若要插入key 为4.5的节点,先要找到需要插入的位置,如图中黄线所示,然后随机生成一个层数(范围是1层到当前跳跃表层数+1,随机数生成器可以自行设计),初始化该节点,然后进行调整指针。

image

假设随机生成的层数为3,那么插入后为:

image

是不是比平衡树简单多了?当然,如果随机生成的层数为 当前跳跃表层数+1,那么跳跃表层数增加一层,header节点需要增加一层。

Python实现如下:

image

删除操作呢?跟插入操作类似,但是更为简单,只需要如下3个步骤:

1、首先,需要找到每一层要删除节点的位置,并保存(用于后续调整指针);

2、相关的指针的调整;

3、若层数减少,需要调整跳跃表层数和Header节点。

如果删除6这个节点,找到相应的位置,然后调整指针即可:

image

删除后的结果为:

image

Python代码实现为:

image

这里需要注意,如果删除元素后导致层数发生变化,那么需要对header节点进行调整的,即降低一层。

跳跃表的原理及实现你是否深入理解了?

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,902评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,037评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,978评论 0 332
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,867评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,763评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,104评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,565评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,236评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,379评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,313评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,363评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,034评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,637评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,719评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,952评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,371评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,948评论 2 341

推荐阅读更多精彩内容