### 需要的配置只有一个sql文件
### 代码整体的结构参考开源项目 [waterdrop](https://github.com/InterestingLab/waterdrop)
### 代码中SQL文件解析的部分参考开源项目[flinkStreamSQL](https://github.com/DTStack/flinkStreamSQL)
#### 1.实现socket输入 console输出
配置:
```shell
CREATE TABLE SocketTable(
word String,
valuecount int
)WITH(
type='socket',
host='hadoop-sh1-core1',
port='9998',
delimiter=' '
);
create SINK console(
)WITH(
type='console',
outputmode='complete'
);
insert into console select word,count(*) from SocketTable group by word;
```
上面语句,首先创建一个table,它的前半部分是字段和类型,后半是type为socket的数据源,分隔符号是空格符(默认是逗号),后续中会根据create的名字创建一个同名的streaming table,schema是配置的字段
然后创建sink——输出表,将console定义为一张表,type是console,outputmode为complete(默认也是)
语句,首先是一个insert into(一定要写) ,插入表就是sink表,后面则是进行处理的数据的sql,这个例子是select word,count(valuecount) from SocketTable group by word,这样,数据就能用Structured Streaming默认的流式的方式从socket到console
```shell
输入:
a 2
a 2
输出:
Batch: 0
-------------------------------------------
+----+--------+
|WORD|count(1)|
+----+--------+
+----+--------+
-------------------------------------------
Batch: 1
-------------------------------------------
+----+--------+
|WORD|count(1)|
+----+--------+
|a |4 |
+----+--------+
```
#### 2.实现kafka输入 console输出
```shell
CREATE TABLE kafkaTable(
word string,
wordcount int
)WITH(
type='kafka',
kafka.bootstrap.servers='dfttshowkafka001:9092',
subscribe='test',
group='test'
);
create SINK consoleOut(
)WITH(
type='console',
outputmode='complete',
process='2s'
);
insert into consoleOut select word,count(wordcount) from kafkaTable group by word;
```
上面语句和前面一样,consoleOut配置中多了一个process='2s',意思是,控制台2秒输出一次
#### 3.实现csv输入 console输出
```shell
CREATE TABLE csvTable(
name string,
age int
)WITH(
type='csv',
delimiter=';',
path='F:\E\wordspace\sqlstream\filepath'
);
create SINK console(
)WITH(
type='console',
outputmode='complete',
);
insert into console select name,sum(age) from csvTable group by name;
输入的csv文件里的数据是:
zhang;23
wang;24
li;25
zhang;56
输出是:
root
|-- NAME: string (nullable = true)
|-- AGE: integer (nullable = true)
-------------------------------------------
Batch: 0
-------------------------------------------
+-----+--------+
|NAME |sum(AGE)|
+-----+--------+
|zhang|79 |
|wang |24 |
|li |25 |
+-----+--------+
```
#### 4.实现socket输入 console输出,添加processtime的窗口函数
```shell
CREATE TABLE SocketTable(
word String
)WITH(
type='socket',
host='hadoop-sh1-core1',
processwindow='10 seconds,5 seconds',
watermark='10 seconds',
port='9998'
);
create SINK console(
)WITH(
type='console',
outputmode='complete'
);
insert into console select processwindow,word,count(*) from SocketTable group by processwindow,word;
```
上面socket中多了两个参数,processwindow和watermark,processwindow其实就和sparkstreaming的流式处理差不多,前面是window,后一个是slide,写一个或者两个一致都是翻转窗口。
watermark是一个延迟,就是允许你的数据迟到多久,这个,貌似在processtime里没啥意义。
sql语句中,processwindow其实包含两个值,window的起始和结束,我们看一下结果
```shell
-------------------------------------------
Batch: 0
-------------------------------------------
+-------------+----+--------+
|PROCESSWINDOW|WORD|count(1)|
+-------------+----+--------+
+-------------+----+--------+
-------------------------------------------
Batch: 1
-------------------------------------------
+------------------------------------------+----+--------+
|PROCESSWINDOW |WORD|count(1)|
+------------------------------------------+----+--------+
|[2018-12-11 19:17:00, 2018-12-11 19:17:10]|c |1 |
|[2018-12-11 19:17:00, 2018-12-11 19:17:10]|a |3 |
+------------------------------------------+----+--------+
-------------------------------------------
Batch: 2
-------------------------------------------
+------------------------------------------+----+--------+
|PROCESSWINDOW |WORD|count(1)|
+------------------------------------------+----+--------+
|[2018-12-11 19:17:00, 2018-12-11 19:17:10]|c |2 |
|[2018-12-11 19:17:00, 2018-12-11 19:17:10]|a |4 |
+------------------------------------------+----+--------+
```
sql中select部分也可以不加processwindow则去掉PROCESSWINDOW这个参数,但是group部分要加上去,这样才能做到根据窗口分组数据
#### 4.实现socket输入 console输出,添加eventtime的窗口函数
eventtime和processtime的区别主要是,eventtime是根据事件事件来处理数据的,process则是来一条处理一条
```shell
CREATE TABLE SocketTable(
timestamp Timestamp,
word String
)WITH(
type='socket',
host='hadoop-sh1-core1',
eventfield='timestamp',
eventwindow='10 seconds,5 seconds',
watermark='10 seconds',
port='9998'
);
create SINK console(
)WITH(
type='console',
outputmode='complete'
);
insert into console select eventwindow,word,count(*) from SocketTable group by eventwindow,word;
```
eventtime——>根据事件事件生成,你的数据中肯定要有一个字段是代表时间的,上面的例子中代表时间字段的就是timestamp字段,类型是Timestamp
再下半部分的配置中有个eventfield的配置,就是指定前面的field中哪一个用来作为事件时间的那个时间
eventwindow和processtime的意思差不多名字不一样而已
watermark就是允许事件延迟的时间了,因为根据事件时间处理,肯定会存在先来后到,watermark设置为10 seconds,就是允许你的record的时间延迟10秒,后面,超过10秒的数据,再迟来的话,就会被丢弃。
```shell
运行过程中打印的schema
root
|-- TIMESTAMP: timestamp (nullable = true)
|-- WORD: string (nullable = true)
|-- eventwindow: struct (nullable = true)
| |-- start: timestamp (nullable = true)
| |-- end: timestamp (nullable = true)
输入数据
2018-12-07 16:36:12,a
2018-12-07 16:36:22,a
2018-12-07 16:36:32,b
2018-12-07 16:36:42,a
2018-12-07 16:36:52,a
输出结果
Batch: 0
-------------------------------------------
+-----------+----+--------+
|EVENTWINDOW|WORD|count(1)|
+-----------+----+--------+
+-----------+----+--------+
-------------------------------------------
Batch: 1
-------------------------------------------
+------------------------------------------+----+--------+
|EVENTWINDOW |WORD|count(1)|
+------------------------------------------+----+--------+
|[2018-12-07 16:36:05, 2018-12-07 16:36:15]|a |1 |
|[2018-12-07 16:36:10, 2018-12-07 16:36:20]|a |1 |
+------------------------------------------+----+--------+
-------------------------------------------
Batch: 2
-------------------------------------------
+------------------------------------------+----+--------+
|EVENTWINDOW |WORD|count(1)|
+------------------------------------------+----+--------+
|[2018-12-07 16:36:30, 2018-12-07 16:36:40]|b |1 |
|[2018-12-07 16:36:15, 2018-12-07 16:36:25]|a |1 |
|[2018-12-07 16:36:45, 2018-12-07 16:36:55]|a |1 |
|[2018-12-07 16:36:40, 2018-12-07 16:36:50]|a |1 |
|[2018-12-07 16:36:20, 2018-12-07 16:36:30]|a |1 |
|[2018-12-07 16:36:50, 2018-12-07 16:37:00]|a |1 |
|[2018-12-07 16:36:25, 2018-12-07 16:36:35]|b |1 |
|[2018-12-07 16:36:05, 2018-12-07 16:36:15]|a |1 |
|[2018-12-07 16:36:10, 2018-12-07 16:36:20]|a |1 |
|[2018-12-07 16:36:35, 2018-12-07 16:36:45]|a |1 |
+------------------------------------------+----+--------+
```
#### 5.改变sql语句而不用重启项目实现更新(待实现)
#### 6.配置中加入spark的配置参数实现调优(待实现)
#### 7.自定义UDF函数(待实现)