如何量化两个字符串的相似度?
编辑距离指的就是,将一个字符串转化成另一个字符串,需要的最少编辑操作次数(比如增加一个字符、删除一个字符、替换一个字符)。编辑距离越大,说明两个字符串的相似程度越小;相反,编辑距离就越小,说明两个字符串的相似程度越大。对于两个完全相同的字符串来说,编辑距离就是 0。
根据所包含的编辑操作种类的不同,编辑距离有多种不同的计算方式,比较著名的有莱文斯坦距离(Levenshtein distance)和最长公共子串长度(Longest common substring length)。其中,莱文斯坦距离允许增加、删除、替换字符这三个编辑操作,最长公共子串长度只允许增加、删除字符这两个编辑操作。
而且,莱文斯坦距离和最长公共子串长度,从两个截然相反的角度,分析字符串的相似程度。莱文斯坦距离的大小,表示两个字符串差异的大小;而最长公共子串的大小,表示两个字符串相似程度的大小。
如何编程计算莱文斯坦距离?
回溯算法
private char[] a = "mitcmu".toCharArray();
private char[] b = "mtacnu".toCharArray();
private int n = 6;
private int m = 6;
private int minDist = Integer.MAX_VALUE; // 存储结果
// 调用方式 lwstBT(0, 0, 0);
public lwstBT(int i, int j, int edist) {
if (i == n || j == m) {
if (i < n) edist += (n-i);
if (j < m) edist += (m - j);
if (edist < minDist) minDist = edist;
return;
}
if (a[i] == b[j]) { // 两个字符匹配
lwstBT(i+1, j+1, edist);
} else { // 两个字符不匹配
lwstBT(i + 1, j, edist + 1); // 删除a[i]或者b[j]前添加一个字符
lwstBT(i, j + 1, edist + 1); // 删除b[j]或者a[i]前添加一个字符
lwstBT(i + 1, j + 1, edist + 1); // 将a[i]和b[j]替换为相同字符
}
}
动态规划
public int lwstDP(char[] a, int n, char[] b, int m) {
int[][] minDist = new int[n][m];
for (int j = 0; j < m; ++j) { // 初始化第0行:a[0..0]与b[0..j]的编辑距离
if (a[0] == b[j]) minDist[0][j] = j;
else if (j != 0) minDist[0][j] = minDist[0][j-1]+1;
else minDist[0][j] = 1;
}
for (int i = 0; i < n; ++i) { // 初始化第0列:a[0..i]与b[0..0]的编辑距离
if (a[i] == b[0]) minDist[i][0] = i;
else if (i != 0) minDist[i][0] = minDist[i-1][0]+1;
else minDist[i][0] = 1;
}
for (int i = 1; i < n; ++i) { // 按行填表
for (int j = 1; j < m; ++j) {
if (a[i] == b[j]) minDist[i][j] = min(
minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]);
else minDist[i][j] = min(
minDist[i-1][j]+1, minDist[i][j-1]+1, minDist[i-1][j-1]+1);
}
}
return minDist[n-1][m-1];
}
private int min(int x, int y, int z) {
int minv = Integer.MAX_VALUE;
if (x < minv) minv = x;
if (y < minv) minv = y;
if (z < minv) minv = z;
return minv;
}
如何编程计算最长公共子串长度?
动态规划
public int lcs(char[] a, int n, char[] b, int m) {
int[][] maxlcs = new int[n][m];
for (int j = 0; j < m; ++j) {//初始化第0行:a[0..0]与b[0..j]的maxlcs
if (a[0] == b[j]) maxlcs[0][j] = 1;
else if (j != 0) maxlcs[0][j] = maxlcs[0][j-1];
else maxlcs[0][j] = 0;
}
for (int i = 0; i < n; ++i) {//初始化第0列:a[0..i]与b[0..0]的maxlcs
if (a[i] == b[0]) maxlcs[i][0] = 1;
else if (i != 0) maxlcs[i][0] = maxlcs[i-1][0];
else maxlcs[i][0] = 0;
}
for (int i = 1; i < n; ++i) { // 填表
for (int j = 1; j < m; ++j) {
if (a[i] == b[j]) maxlcs[i][j] = max(
maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]+1);
else maxlcs[i][j] = max(
maxlcs[i-1][j], maxlcs[i][j-1], maxlcs[i-1][j-1]);
}
}
return maxlcs[n-1][m-1];
}
private int max(int x, int y, int z) {
int maxv = Integer.MIN_VALUE;
if (x > maxv) maxv = x;
if (y > maxv) maxv = y;
if (z > maxv) maxv = z;
return maxv;
}