用 TensorFlow 做个聊天机器人

上一次提到了不错的学习聊天机器人的资源,不知道小伙伴们有没有去学习呢。
自己动手做聊天机器人教程
我最近每天都会学一点,拿出解读来和大家分享一下。

本文结构:

    1. 聊天机器人的架构简图
    1. 用 TensorFlow 实现 Chatbot 的模型
    1. 如何准备 chatbot 的训练数据
    1. Chatbot 源码解读

1. 聊天机器人的架构简图

学习资源:
[自己动手做聊天机器人 九-聊天机器人应该怎么做]
(http://www.shareditor.com/blogshow/?blogId=73)

聊天机器人的工作流程大体为:提问-检索-答案抽取。

提问:就是要分析主人的问句中关键词,提问类型,还有真正想知道的东西。

检索:根据前一步的分析,去找答案。

答案抽取:找到的答案,并不能直接应用,还要整理成真正有用的,可以作为答案的回答。

涉及到的关键技术如图中所示。

看不清图的话,就是酱紫:

问句解析:
中文分词、词性标注、实体标注、概念类别标注、句法分析、语义分析、逻辑结构标注、指代消解、关联关系标注、问句分类、答案类别确定;

海量文本知识表示:
网络文本资源获取、机器学习方法、大规模语义计算和推理、知识表示体系、知识库构建

答案生成与过滤:
候选答案抽取、关系推演、吻合程度判断、噪声过滤


2. 用 TensorFlow 实现 Chatbot 的模型

之前有根据 Siraj 的视频写过一篇《自己动手写个聊天机器人吧》
文章里只写了主函数的简单过程:Data-Model-Training,是用 Lua 实现的,详细的代码可以去他的 github 上学习

下面这篇文章是用 TensorFlow + tflearn 库 实现,在 建模, 训练 和 预测 等环节可以学到更多细节:

学习资源:自己动手做聊天机器人 三十八-原来聊天机器人是这么做出来的

两篇的共同点是都用了 Seq2Seq 来实现。

LSTM的模型结构为:

细节的话可以直接去看上面那篇原文,这里 po 出建立模型阶段简要的流程图和过程描述:


  • 先将原始数据 300w chat 做一下预处理,即 切词,分为 问答对。

  • 然后用 word2vec 训练出词向量,生成二进制的词向量文件。

作为 Input data X 传入下面流程:

  • question 进入 LSTM 的 encoder 环节,answer 进入 decoder 环节,

  • 分别生成 output tensor。

  • 其中 decoder 是一个词一个词的生成结果,将所有结果加入到一个 list 中。

  • 最后和 encoder 的输出,一起做为下一环节 Regression 的输入,并传入 DNN 网络。


3. 如何准备 chatbot 的训练数据

学习资源:
自己动手做聊天机器人 三十八-原来聊天机器人是这么做出来的

训练数据的生成过程如下:

  • 首先在 input file 里读取每一行,并根据 ‘|’ 拆分成 question 和 answer 句子。
  • 每个句子,都将 word 通过 word2vec 转化成词向量。
  • 每一句的向量序列都转化成相同维度的形式:self.word_vec_dim * self.max_seq_len
  • 最后 answer 构成了 y 数据,question+answer 构成了 xy 数据,再被投入到 model 中去训练:
model.fit(trainXY, trainY, n_epoch=1000, snapshot_epoch=False, batch_size=1)

代码如下:

def init_seq(input_file):
    """读取切好词的文本文件,加载全部词序列
    """
    file_object = open(input_file, 'r')
    vocab_dict = {}
    while True:
        question_seq = []
        answer_seq = []
        line = file_object.readline()
        if line:
            line_pair = line.split('|')
            line_question = line_pair[0]
            line_answer = line_pair[1]
            for word in line_question.decode('utf-8').split(' '):
                if word_vector_dict.has_key(word):
                    question_seq.append(word_vector_dict[word])
            for word in line_answer.decode('utf-8').split(' '):
                if word_vector_dict.has_key(word):
                    answer_seq.append(word_vector_dict[word])
        else:
            break
        question_seqs.append(question_seq)
        answer_seqs.append(answer_seq)
    file_object.close()

def generate_trainig_data(self):
        xy_data = []
        y_data = []
        for i in range(len(question_seqs)):
            question_seq = question_seqs[i]
            answer_seq = answer_seqs[i]
            if len(question_seq) < self.max_seq_len and len(answer_seq) < self.max_seq_len:
                sequence_xy = [np.zeros(self.word_vec_dim)] * (self.max_seq_len-len(question_seq)) + list(reversed(question_seq))
                sequence_y = answer_seq + [np.zeros(self.word_vec_dim)] * (self.max_seq_len-len(answer_seq))
                sequence_xy = sequence_xy + sequence_y
                sequence_y = [np.ones(self.word_vec_dim)] + sequence_y
                xy_data.append(sequence_xy)
                y_data.append(sequence_y)
        return np.array(xy_data), np.array(y_data)

4. Chatbot 源码解读

学习资源:
自己动手做聊天机器人 三十八-原来聊天机器人是这么做出来的

这篇文章在 github 上的源码:

提炼出步骤如下:

其中 2. 准备数据, 3. 建立模型 就是上文着重说的部分。

    1. 引入包
    1. 准备数据
    1. 建立模型
    1. 训练
    1. 预测

1. 引入包

import sys
import math
import tflearn
import tensorflow as tf
from tensorflow.python.ops import rnn_cell
from tensorflow.python.ops import rnn
import chardet
import numpy as np
import struct

2. 准备数据

def load_word_set()
将 3000 万语料,分成 Question 和 Answer 部分,提取出 word。

def load_word_set():
    file_object = open('./segment_result_lined.3000000.pair.less', 'r')
    while True:
        line = file_object.readline()
        if line:
            line_pair = line.split('|')
            line_question = line_pair[0]
            line_answer = line_pair[1]
            for word in line_question.decode('utf-8').split(' '):
                word_set[word] = 1
            for word in line_answer.decode('utf-8').split(' '):
                word_set[word] = 1
        else:
            break
    file_object.close()

def load_vectors(input)
从 vectors.bin 加载词向量,返回一个 word_vector_dict 的词典,key 是词,value 是200维的向量。

def init_seq(input_file)
将 Question 和 Answer 中单词对应的词向量放在词向量序列中 question_seqs, answer_seqs

def init_seq(input_file):
    """读取切好词的文本文件,加载全部词序列
    """
    file_object = open(input_file, 'r')
    vocab_dict = {}
    while True:
        question_seq = []
        answer_seq = []
        line = file_object.readline()
        if line:
            line_pair = line.split('|')
            line_question = line_pair[0]
            line_answer = line_pair[1]
            for word in line_question.decode('utf-8').split(' '):
                if word_vector_dict.has_key(word):
                    question_seq.append(word_vector_dict[word])
            for word in line_answer.decode('utf-8').split(' '):
                if word_vector_dict.has_key(word):
                    answer_seq.append(word_vector_dict[word])
        else:
            break
        question_seqs.append(question_seq)
        answer_seqs.append(answer_seq)
    file_object.close()

def vector_sqrtlen(vector)
用来求向量的长度。

def vector_sqrtlen(vector):
    len = 0
    for item in vector:
        len += item * item
    len = math.sqrt(len)
    return len

def vector_cosine(v1, v2)
用来求两个向量间的距离。

def vector_cosine(v1, v2):
    if len(v1) != len(v2):
        sys.exit(1)
    sqrtlen1 = vector_sqrtlen(v1)
    sqrtlen2 = vector_sqrtlen(v2)
    value = 0
    for item1, item2 in zip(v1, v2):
        value += item1 * item2
    return value / (sqrtlen1*sqrtlen2)

def vector2word(vector)
给定一个词向量,去 word-vector 字典中查找与此向量距离最近的向量,并记忆相应的单词,返回单词和 cosine 值。

def vector2word(vector):
    max_cos = -10000
    match_word = ''
    for word in word_vector_dict:
        v = word_vector_dict[word]
        cosine = vector_cosine(vector, v)
        if cosine > max_cos:
            max_cos = cosine
            match_word = word
    return (match_word, max_cos)

3. 建立模型

class MySeq2Seq(object)
在前两篇笔记中单独写了这两块。

def generate_trainig_data(self)
question_seqs, answer_seqs 得到 xy_data 和 y_data 的形式。

def model(self, feed_previous=False)
用 input data 生成 encoder_inputs 和带GO头的 decoder_inputs
将 encoder_inputs 传递给编码器,返回一个输出(预测序列的第一个值)和一个状态(传给解码器)。
在解码器中,用编码器的最后一个输出作为第一个输入,预测过程用前一个时间序的输出作为下一个时间序的输入。

4. 训练

def train(self)
generate_trainig_data() 生成 X y 数据,传递给 上面定义的 model,并训练 model.fit,再保存。

    def train(self):
        trainXY, trainY = self.generate_trainig_data()
        model = self.model(feed_previous=False)
        model.fit(trainXY, trainY, n_epoch=1000, snapshot_epoch=False, batch_size=1)
        model.save('./model/model')
        return model

5. 预测

generate_trainig_data() 生成数据,用 model.predict 进行预测,predict 结果的每一个 sample 相当于一句话的词向量序列,每个 sample 中的每个 vector 在 word-vector 字典中找到与其最近的向量,并返回对应的 word,及二者间的 cosine。

if __name__ == '__main__':
    phrase = sys.argv[1]
    if 3 == len(sys.argv):
        my_seq2seq = MySeq2Seq(word_vec_dim=word_vec_dim, max_seq_len=max_seq_len, input_file=sys.argv[2])
    else:
        my_seq2seq = MySeq2Seq(word_vec_dim=word_vec_dim, max_seq_len=max_seq_len)
    if phrase == 'train':
        my_seq2seq.train()
    else:
        model = my_seq2seq.load()
        trainXY, trainY = my_seq2seq.generate_trainig_data()
        predict = model.predict(trainXY)
        for sample in predict:
            print "predict answer"
            for w in sample[1:]:
                (match_word, max_cos) = vector2word(w)
                #if vector_sqrtlen(w) < 1:
                #    break
                print match_word, max_cos, vector_sqrtlen(w)

历史技术博文链接汇总

我是 不会停的蜗牛 Alice
85后全职主妇
喜欢人工智能,行动派
创造力,思考力,学习力提升修炼进行中
欢迎您的喜欢,关注和评论!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容