OC实现字词向量表示

简介


字词向量表示本质上就是将一个个离散单词通过一定手段映射到向量中,从而使每个单词都有自己的表征向量。这样最直观的好处就是可以计算空间相似度来表征词语间的相似度,另一个好处就是词语有了向量表征后,我们就可以像训练图片或者语音那样来训练文本内容。

下面介绍如何用OC实现字词向量模型,主要实现了四种模型:基于Hierarchical Softmax的连续词袋模型(CBOW)及Skip-Gram模型,和基于Negative Sampling的连续词袋模型(CBOW)及Skip-Gram模型。

数据预处理


首先我们需要一个处理好的输入数据源,最好是每个词语之间是空格分开。英文文章用简单的脚本语言就可以实现过滤做成输入源,中文就比较困难一点,可以借助一些分词工具实现,也可以网上下载专门的训练数据。

接下来就是将词读入数据,并统计每个词语出现的频率,建立好对应关系,这块比较简单,直接看代码:

- (void)readWordFromFile
{
    FILE *file = fopen([_filePath UTF8String], "rb");
    char word[MAX_WORDLENGTH];
    _dicSize = 0;
    _totalWords = 0;
    if (file == NULL) {
        NSLog(@"File Error");
        return;
    }
    while (1) {
        [self readWord:word File:file];
        if (feof(file)) {
            break;
        }
        if (strlen(word) == 0) {
            continue;
        }
        int i = [self findWordInDict:word];
        if (i == -1) { // not found
            [self addWordToDict:word];
        }
        else
        {
            _dictionary[i].frequency++;
        }
        _totalWords++;
    }
    [self sortDict];
    [self buildHuffmanTree];
    _fileSize = ftell(file);
    fclose(file);
}

- (void)readWord:(char *)word File:(FILE *)file
{
    int letter;
    int len = 0;
    while (!feof(file)) {
        letter = fgetc(file);
        if (letter == 13) { // New Page
            continue;
        }
        if (len == 0 && letter == '\n') { // ignore Return
            word[len] = 0;
            return;
        }
        if (letter == ' ' || letter == '\n' || letter == '\t') { // ignore Return + Space + EOL
            break;
        }
        if (len >= MAX_WORDLENGTH - 1) {
            break;
        }
        word[len] = letter;
        len++;
    }
    word[len] = 0;
}

- (int)findWordInDict:(char *)word
{
    id index = [_indexDict objectForKey:[[NSString stringWithCString:word encoding:NSUTF8StringEncoding] lowercaseString]];
    if (index == NULL) {
        return -1;
    }
    return [index intValue];
}

- (void)addWordToDict:(char *)word
{
    long len = strlen(word) + 1;
    _dictionary[_dicSize].word = calloc(len, (sizeof(char)));
    strcpy(_dictionary[_dicSize].word, word);
    _dictionary[_dicSize].frequency = 1;
    _dicSize++;
    
    if (_dicSize +  2 > max_dicSize) {
        max_dicSize += 1000;
        _dictionary = realloc(_dictionary, sizeof(struct dic_word) *  max_dicSize);
    }
    
    [_indexDict setValue:[NSNumber numberWithInt:_dicSize-1] forKey:[[NSString stringWithCString:word encoding:NSUTF8StringEncoding] lowercaseString]];
}

其中,_dictionary是一个自定义struct的数组,定义是

struct dic_word {
    int *code; // Huffman Code
    int codeLength;
    int *position; // path of the HuffmanCode
    char *word;
    long long frequency;
};

最后就是根据词语的频率数组生成一棵Huffman树,目的是给每个词语生成一个可训练的唯一编码与路径。
Huffman树构造过程:

  1. 根据给定的n个权值{w1,w2,...wn}构成n棵二叉树的森林F={T1,T2,...,Tn},其中每棵二叉树Ti中只有一个带权为wi的根结点,且其左右子树为空。
  2. 在森林F中选取两棵根结点的权值最小的树作为左右子树构造一棵新的二叉树,且置新的二叉树的根结点的权值为其左,右子树上根结点的权值之和。
  3. 在F中删除作为新二叉树左,右子树的两棵二叉树,同时将新得到的二叉树加入森林F中。
  4. 重复(2)和(3),直到F中只含有一棵树为止。这棵树便是Huffman树。

Huffman编码就是从树的根结点开始,走到我们查询的叶子节点的路径,如果是左边就是0,右边就是1。

用数组实现的代码如下:

int cmp(const void *a, const void *b)
{
    return (int)(((struct dic_word *)b)->frequency - ((struct dic_word *)a)->frequency);
}

- (void)sortDict
{
    qsort(&_dictionary[0], _dicSize, sizeof(struct dic_word), cmp);
    [_indexDict removeAllObjects];
    for (int i = 0; i < _dicSize; i++) {
        [_indexDict setValue:[NSNumber numberWithInt:i] forKey:[[NSString stringWithCString:_dictionary[i].word encoding:NSUTF8StringEncoding] lowercaseString]];
        _dictionary[i].code = calloc(MAX_CODELENGTH, sizeof(int));
        _dictionary[i].position = calloc(MAX_CODELENGTH, sizeof(int));
    }
}

- (void)buildHuffmanTree
{
    int size = _dicSize * 2;
    long long code[MAX_CODELENGTH], position[MAX_CODELENGTH];
    long long *freq = calloc(size + 1, sizeof(long long));
    long long *parent = calloc(size + 1, sizeof(long long));
    long long *weight = calloc(size + 1, sizeof(long long));
    for (int i = 0; i < _dicSize; i++) {
        freq[i] = _dictionary[i].frequency;
    }
    for (int i = _dicSize; i < size; i++) {
        freq[i] = 1e15;
    }
    
    long long pos1 = _dicSize - 1;
    long long pos2 = _dicSize;
    long long min1, min2;
    for (int i = 0; i < _dicSize - 1; i++) {
        if (pos1 >= 0) {  // find left node
            if (freq[pos1] < freq[pos2]) {
                min1 = pos1;
                pos1--;
            }
            else
            {
                min1 = pos2;
                pos2++;
            }
        }
        else
        {
            min1 = pos2;
            pos2++;
        }

        if (pos1 >= 0) { // find right node
            if (freq[pos1] < freq[pos2]) {
                min2 = pos1;
                pos1--;
            }
            else
            {
                min2 = pos2;
                pos2++;
            }
        }
        else
        {
            min2 = pos2;
            pos2++;
        }

        // combine tree
        freq[_dicSize + i] = freq[min1] + freq[min2];
        parent[min1] = parent[min2] = _dicSize + i;
        weight[min1] = 0;
        weight[min2] = 1;
    }
    
    // assign dictionary code
    for (int i = 0; i < _dicSize; i++) {
        long long back = i;
        int pos = 0;
        while (back != size - 2) {
            code[pos] = weight[back];
            position[pos] = back;
            back = parent[back];
            pos++;
        }
        _dictionary[i].codeLength = pos;
        _dictionary[i].position[0] = _dicSize - 2; // position[0] -> the root
        
        // loop: code[0] <-> position[1] ----> code[n] <-> position[n+1]
        for (int j = 0; j < pos; j++) {
            _dictionary[i].code[pos-1-j] = (int)code[j];
            _dictionary[i].position[pos-j] = (int)position[j] - _dicSize;
        }
    }
    
    free(freq);
    free(parent);
    free(weight);
}

模型实现


CBOW及Skip-Gram模型,从算法角度看非常相似,其区别为CBOW根据源词上下文词汇('the cat sits on the')来预测目标词汇(例如,‘mat’),而Skip-Gram模型做法相反,它通过目标词汇('mat')来预测源词汇('the cat sits on')。两种方法各有优缺点,CBOW在小型数据集下表现较好而Skip-Gram更适合大型数据集。

训练方式也分为两种,一种是Hierarchical Softmax,这种方式要用到前面数据预处理的Huffman编码与路径,开销较大。

另一种则是Negative Sampling,这种方式就避免了对所有特征的学习。它的原理是用一个二分类器(逻辑回归)在同一个上下文环境里从 k 虚构的 (噪声) 单词W*区分出真正的目标单词Wt。使用这种方式需要对每个单词初始化一个与它频率相关的随机选中概率。

CBOW实现代码:

// Hierarchical Softmax
- (void)HSCbow:(int)threadId file:(const char *)filePath
{
    FILE *file = fopen(filePath, "rb");
    if (file == NULL) {
        NSLog(@"File Error");
        return;
    }
    fseek(file, _loader.fileSize / _threadNum * threadId, SEEK_SET);
    int sentence[MAX_SENTENCE];
    int senPos = 0;
    int iter = _iterNum;
    while (iter) {
        
        while (1) {
            int index = [_loader readWordIndex:file];
            if (feof(file)) {
                break;
            }
            if (index == -1) {
                continue;
            }
            sentence[senPos] = index;
            senPos++;
            _trainedNum++;
            if (senPos >= _loader.totalWords / _threadNum) {
                break;
            }
        }
        
        if (_trainedNum > _descentGap) {
            _descentRate *= 1 - _trainedNum / (double)(_iterNum * _loader.totalWords + 1);
            if (_descentRate < _startDescentRate / 1e4) {
                _descentRate = _startDescentRate / 1e4;
            }
            _descentGap += 1e4;
        }
        
        for (int i = 0; i < senPos; i++) {
            int word = sentence[i];
            int start = rand() %  _windowSize;
            double *layer = calloc(_layerSize, sizeof(double));
            double *layerLoss = calloc(_layerSize, sizeof(double));
            // sum the surrounding words
            for (int j = start; j < 2 * _windowSize + 1 - start; j ++) if(j != _windowSize){
                int cindex = i - _windowSize + j;
                if (cindex < 0 || cindex >= senPos) {
                    continue;
                }
                int cword = sentence[cindex];
                vDSP_vaddD(layer, 1, (_neur1 + _layerSize * cword), 1, layer, 1, _layerSize);
            }
            
            // update neur2
            for (int l = 0; l < _loader.dictionary[word].codeLength; l++) {
                int dw = _loader.dictionary[word].code[l];
                int codeP = _loader.dictionary[word].position[l];
                double multX = 0;
                for (int p = 0; p < _layerSize; p++) {
                    multX += layer[p] * _neur2[codeP*_layerSize + p];
                }
                double q = [self sigmoid:multX];
                double g = _descentRate * (1 - dw - q);
                for (int p = 0; p < _layerSize; p++) {
                    layerLoss[p] += g * _neur2[codeP*_layerSize + p];
                }
                
                for (int p = 0; p < _layerSize; p++) {
                    _neur2[codeP*_layerSize + p] += g * layer[p];
                }
            }
            
            // update neur1
            for (int j = start; j < 2 * _windowSize + 1 - start; j ++) if(j != _windowSize){
                int cindex = i - _windowSize + j;
                if (cindex < 0 || cindex >= senPos) {
                    continue;
                }
                int cword = sentence[cindex];
                vDSP_vaddD(layerLoss, 1, (_neur1 + _layerSize * cword), 1, (_neur1 + _layerSize * cword), 1, _layerSize);
            }
            
            free(layer);
            free(layerLoss);
        }
        
        senPos = 0;
        fseek(file, _loader.fileSize / _threadNum * threadId, SEEK_SET);
        iter--;
    }
}

// Negative Sampling
- (void)NSCbow:(int)threadId file:(const char *)filePath
{
    FILE *file = fopen(filePath, "rb");
    if (file == NULL) {
        NSLog(@"File Error");
        return;
    }
    fseek(file, _loader.fileSize / _threadNum * threadId, SEEK_SET);
    int sentence[MAX_SENTENCE];
    int senPos = 0;
    int iter = _iterNum;
    while (iter) {
        
        while (1) {
            int index = [_loader readWordIndex:file];
            if (feof(file)) {
                break;
            }
            if (index == -1) {
                continue;
            }
            sentence[senPos] = index;
            senPos++;
            _trainedNum++;
            if (senPos >= _loader.totalWords / _threadNum) {
                break;
            }
        }
        
        if (_trainedNum > _descentGap) {
            _descentRate *= 1 - _trainedNum / (double)(_iterNum * _loader.totalWords + 1);
            if (_descentRate < _startDescentRate / 1e4) {
                _descentRate = _startDescentRate / 1e4;
            }
            _descentGap += 1e4;
        }
        
        for (int i = 0; i < senPos; i++) {
            int word = sentence[i];
            int start = rand() %  _windowSize;
            double *layer = calloc(_layerSize, sizeof(double));
            double *layerLoss = calloc(_layerSize, sizeof(double));
            // sum the surrounding words
            for (int j = start; j < 2 * _windowSize + 1 - start; j ++) if(j != _windowSize){
                int cindex = i - _windowSize + j;
                if (cindex < 0 || cindex >= senPos) {
                    continue;
                }
                int cword = sentence[cindex];
                vDSP_vaddD(layer, 1, (_neur1 + _layerSize * cword), 1, layer, 1, _layerSize);
            }
            
            // update neur2
            int label, seed;
            for (int l = 0; l <= _negativeSeed; l++) {
                if (l == 0) {
                    label = 1;
                    seed = word;
                }
                else
                {
                    seed = _nsTable[rand() % _loader.totalWords];
                    if (seed == word) {
                        continue;
                    }
                    label = 0;
                }
                double multX = 0;
                for (int p = 0; p < _layerSize; p++) {
                    multX += layer[p] * _neur2[seed*_layerSize + p];
                }
                double q = [self sigmoid:multX];
                double g = _descentRate * (label - q);
                for (int p = 0; p < _layerSize; p++) {
                    layerLoss[p] += g * _neur2[seed*_layerSize + p];
                }
                
                for (int p = 0; p < _layerSize; p++) {
                    _neur2[seed*_layerSize + p] += g * layer[p];
                }
            }
            
            // update neur1
            for (int j = start; j < 2 * _windowSize + 1 - start; j ++) if(j != _windowSize){
                int cindex = i - _windowSize + j;
                if (cindex < 0 || cindex >= senPos) {
                    continue;
                }
                int cword = sentence[cindex];
                vDSP_vaddD(layerLoss, 1, (_neur1 + _layerSize * cword), 1, (_neur1 + _layerSize * cword), 1, _layerSize);
            }
            
            free(layer);
            free(layerLoss);
        }
        
        senPos = 0;
        fseek(file, _loader.fileSize / _threadNum * threadId, SEEK_SET);
        iter--;
    }
}

- (double)sigmoid:(double)x
{
    if (x > 20) {
        return 1;
    }
    if (x < -20) {
        return 0;
    }
    return exp(x) / (1 + exp(x));
}

- (void)createNSTable
{
    _nsTable = calloc(_loader.totalWords, sizeof(int));
    int seg = 0;
    for (int i = 0; i < _loader.dicSize; i++) {
        for (int j = 0; j < _loader.dictionary[i].frequency; j++) {
            _nsTable[seg] = i;
//            printf("%d ",_nsTable[seg]);
            seg++;
        }
    }
}

Skip-Gram实现代码:

// Hierarchical Softmax
- (void)HSSkipGram:(int)threadId file:(const char *)filePath
{
    FILE *file = fopen(filePath, "rb");
    if (file == NULL) {
        NSLog(@"File Error");
        return;
    }
    fseek(file, _loader.fileSize / _threadNum * threadId, SEEK_SET);
    int sentence[MAX_SENTENCE];
    int senPos = 0;
    int iter = _iterNum;
    while (iter) {
        
        while (1) {
            int index = [_loader readWordIndex:file];
            if (feof(file)) {
                break;
            }
            if (index == -1) {
                continue;
            }
            sentence[senPos] = index;
            senPos++;
            _trainedNum++;
            if (senPos >= _loader.totalWords / _threadNum) {
                break;
            }
        }
        
        if (_trainedNum > _descentGap) {
            _descentRate *= 1 - _trainedNum / (double)(_iterNum * _loader.totalWords + 1);
            if (_descentRate < _startDescentRate / 1e4) {
                _descentRate = _startDescentRate / 1e4;
            }
            _descentGap += 1e4;
        }
        
        for (int i = 0; i < senPos; i++) {
            int word = sentence[i];
            int start = rand() %  _windowSize;
            
            for (int j = start; j < 2 * _windowSize + 1 - start; j ++) if(j != _windowSize){
                double *layerLoss = calloc(_layerSize, sizeof(double));
                int cindex = i - _windowSize + j;
                if (cindex < 0 || cindex >= senPos) {
                    continue;
                }
                int cword = sentence[cindex];
               
                // update neur2
                for (int l = 0; l < _loader.dictionary[word].codeLength; l++) {
                    int dw = _loader.dictionary[word].code[l];
                    int codeP = _loader.dictionary[word].position[l];
                    double multX = 0;
                    for (int p = 0; p < _layerSize; p++) {
                        multX += _neur1[cword*_layerSize + p] * _neur2[codeP*_layerSize + p];
                    }
                    double q = [self sigmoid:multX];
                    double g = _descentRate * (1 - dw - q);
                    
                    for (int p = 0; p < _layerSize; p++) {
                        layerLoss[p] += g * _neur2[codeP*_layerSize + p];
                    }
                    
                    for (int p = 0; p < _layerSize; p++) {
                        _neur2[codeP*_layerSize + p] += g * _neur1[cword*_layerSize + p];
                    }
                }
                
                // update neur1
                vDSP_vaddD(layerLoss, 1, (_neur1 + _layerSize * cword), 1, (_neur1 + _layerSize * cword), 1, _layerSize);
                free(layerLoss);
            }
        }
        
        senPos = 0;
        fseek(file, _loader.fileSize / _threadNum * threadId, SEEK_SET);
        iter--;
    }
}

// Negative Sampling
- (void)NSSkipGram:(int)threadId file:(const char *)filePath
{
    FILE *file = fopen(filePath, "rb");
    if (file == NULL) {
        NSLog(@"File Error");
        return;
    }
    fseek(file, _loader.fileSize / _threadNum * threadId, SEEK_SET);
    int sentence[MAX_SENTENCE];
    int senPos = 0;
    int iter = _iterNum;
    while (iter) {
        
        while (1) {
            int index = [_loader readWordIndex:file];
            if (feof(file)) {
                break;
            }
            if (index == -1) {
                continue;
            }
            sentence[senPos] = index;
            senPos++;
            _trainedNum++;
            if (senPos >= _loader.totalWords / _threadNum) {
                break;
            }
        }
        
        if (_trainedNum > _descentGap) {
            _descentRate *= 1 - _trainedNum / (double)(_iterNum * _loader.totalWords + 1);
            if (_descentRate < _startDescentRate / 1e4) {
                _descentRate = _startDescentRate / 1e4;
            }
            _descentGap += 1e4;
        }
        
        for (int i = 0; i < senPos; i++) {
            int word = sentence[i];
            int start = rand() %  _windowSize;
            
            for (int j = start; j < 2 * _windowSize + 1 - start; j ++) if(j != _windowSize){
                double *layerLoss = calloc(_layerSize, sizeof(double));
                int cindex = i - _windowSize + j;
                if (cindex < 0 || cindex >= senPos) {
                    continue;
                }
                int cword = sentence[cindex];
                
                // update neur2
                int label,seed;
                for (int l = 0; l <= _negativeSeed; l++) {
                    if (l == 0) {
                        label = 1;
                        seed = word;
                    }
                    else
                    {
                        seed = _nsTable[rand() % _loader.totalWords];
                        if (seed == word) {
                            continue;
                        }
                        label = 0;
                    }
                    double multX = 0;
                    for (int p = 0; p < _layerSize; p++) {
                        multX += _neur1[cword*_layerSize + p] * _neur2[seed*_layerSize + p];
                    }
                    double q = [self sigmoid:multX];
                    double g = _descentRate * (label - q);
                    
                    for (int p = 0; p < _layerSize; p++) {
                        layerLoss[p] += g * _neur2[seed*_layerSize + p];
                    }
                    
                    for (int p = 0; p < _layerSize; p++) {
                        _neur2[seed*_layerSize + p] += g * _neur1[cword*_layerSize + p];
                    }
                }
                
                // update neur1
                vDSP_vaddD(layerLoss, 1, (_neur1 + _layerSize * cword), 1, (_neur1 + _layerSize * cword), 1, _layerSize);
                free(layerLoss);
            }
        }
        
        senPos = 0;
        fseek(file, _loader.fileSize / _threadNum * threadId, SEEK_SET);
        iter--;
    }
}

- (double)sigmoid:(double)x
{
    if (x > 20) {
        return 1;
    }
    if (x < -20) {
        return 0;
    }
    return exp(x) / (1 + exp(x));
}

- (void)createNSTable
{
    _nsTable = calloc(_loader.totalWords, sizeof(int));
    int seg = 0;
    for (int i = 0; i < _loader.dicSize; i++) {
        for (int j = 0; j < _loader.dictionary[i].frequency; j++) {
            _nsTable[seg] = i;
            seg++;
        }
    }
}

训练结果


我这里用NSCBow训练了一下《北京折叠》英文版里面的词语,然后输出了几个单词与之Cosine Distance相近的词语。

Result

有兴趣的朋友可以看这里的完整代码Orz😊。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,013评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,205评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,370评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,168评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,153评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,954评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,271评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,916评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,382评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,877评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,989评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,624评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,209评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,199评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,418评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,401评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,700评论 2 345

推荐阅读更多精彩内容