CNN卷积的计算以AlexNet为例

output_size=( input_size + pad * 2 - conv_size ) / stride + 1

第一层:

输入为224*224*3的RGB图像,会通过预处理变为227*227*3的图像,这个图像被96个kernel采样,每个kernel的大小为11*11*3。stride为4;所以output的大小为(227-11)/4+1=55。.这样得到了96个55 * 55大小的特征图了,并且是RGB通道的。96个卷积核分成2组(因为采用了2个GPU服务器进行处理),每组48个卷积核;所以就有了图中的第一步卷积后的结果为55*55*48.

3.使用RELU激励函数,来确保特征图的值范围在合理范围之内,比如{0,1},{0,255},这些像素层经过relu1单元的处理,生成激活像素层,尺寸仍为2组55 * 55 * 48的像素层数据。

4.这些像素层经过pool运算(最大池化)的处理,池化运算的尺度为3 * 3,stride移动的步长为2,则池化后图像的尺寸为(55-3)/2+1=27。 即池化后像素的规模为27 * 27 * 96;

5.然后经过归一化处理,归一化运算的尺度为5 * 5;第一卷积层运算结束后形成的像素层的规模为27 *2 7 * 96。分别对应96个卷积核所运算形成。这96层像素层分为2组,每组48个像素层,每组在一个独立的GPU上进行运算。

第二层:

1、第一层输出为两组27*27*48特征图,第二层采用256个5*5*48卷积核,padding=2,所以采样结束后得到的特征图大小为(27+2*2-5)+1=27.256个卷积核分成两组得到27*27*128的特征图

2.这些像素层经过relu2单元的处理,生成激活像素层,尺寸仍为两组27 * 27 * 128的像素层。

3.这些像素层经过pool运算(最大池化)的处理,池化运算的尺度为3 * 3,运算的步长为2,则池化后图像的尺寸为(27-3)/2+1=13。 即池化后像素的规模为2组13 * 13 * 128的像素层。

4.最后经过归一化处理,归一化运算的尺度为5 * 5;第二卷积层运算结束后形成的像素层的规模为2组13 * 13 * 128的像素层。分别对应2组128个卷积核所运算形成。每组在一个GPU上进行运算。即共256个卷积核,共2个GPU进行运算。

第三层:

第三层没有pooling层没有归一化层

1、第三层采用384个大小为3*3*256的卷积核。stride=1.每个GPU中都有192个卷积核,每个卷积核的尺寸是3 * 3 * 256。因此,每个GPU中的卷积核都能对2组13 * 13 * 128的像素层的所有数据进行卷积运算。因此,运算后的卷积核的尺寸为(13-3+1 * 2)/1+1=13。每个GPU中共13 * 13 * 192个卷积核。2个GPU中共13 * 13 * 384个卷积后的像素层。

2、.这些像素层经过激活函数relu3,尺寸仍为2组13 * 13 * 192像素层,共13 * 13 * 384个像素层。

第四层:

第四层采用384个kernels,size is 3*3*192 padding=1计算和第三层一样。

第五层:

1、256 kernels of size 3*3*192。padding=1.计算和第三层一样卷积的结果为:每个GPU中共13*13*128个卷积核。2个GPU中共13 * 13 * 256个卷积后的像素层。

2.这些像素层经过激活函数relu5单元处理,尺寸仍为2组13 * 13 * 128像素层,共13 * 13 * 256个像素层。

3.2组13 * 13 * 128像素层分别在2个不同GPU中进行池化(最大池化)处理。池化运算的尺度为3 * 3,运算的步长为2,则池化后图像的尺寸为(13-3)/2+1=6。 即池化后像素的规模为两组6 * 6 * 128的像素层数据,共6 * 6 * 256规模的像素层数据。

第六层:

1、输入数据的尺寸是6 * 6 * 256,采用6 * 6 * 256尺寸的滤波器对输入数据进行卷积运算;每个6 * 6* 256尺寸的滤波器对第六层的输入数据进行卷积运算生成一个运算结果,通过一个神经元输出这个运算结果;共有4096个6 * 6 * 256尺寸的滤波器对输入数据进行卷积运算,通过4096个神经元输出运算结果;

2、这4096个运算结果通过relu激活函数生成4096个值;

3、在dropout中是说在训练的以1/2概率使得隐藏层的某些neuron的输出为0,这样就丢到了一半节点的输出,BP的时候也不更新这些节点。通过drop运算后输出4096个本层的输出结果值。

第七层:

1.输入的4096个数据与第七层的4096个神经元进行全连接;

2.操作如同然后上一层一样经由relu7进行处理后生成4096个数据;

3.再经过dropout7(同样是以0.5的概率)处理后输出4096个数据。

第八层:

1.第七层输出的4096个数据与第八层的1000个神经元进行全连接,经过训练后输出被训练的数值。

另:

论文中采用了几种方法:

ReLU和多个GPU

为了提高训练速度,AlexNet使用ReLU代替了Sigmoid,其能更快的训练,同时解决sigmoid在训练较深的网络中出现的梯度消失,或者说梯度弥散的问题.

重叠的pool池化

提高精度, 不容易产生过拟合,在以前的CNN中普遍使用平均池化层,AlexNet全部使用最大池化层,避免了平均池化层的模糊化的效果,并且步长比池化的核的尺寸小,这样池化层的输出之间有重叠,提升了特征的丰富性.

局部响应归一化           

提高精度,局部响应归一化,对局部神经元创建了竞争的机制,使得其中响应小打的值变得更大,并抑制反馈较小的.

数据增益 Dropout     

减少过拟合,使用数据增强的方法缓解过拟合现象



参考文章:

https://blog.csdn.net/Rasin_Wu/article/details/80017920

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容