官网安装方法:
https://www.tensorflow.org/install/install_windows
1.pip
2.Anaconda
3.源码:http://www.jianshu.com/p/d0a5fa97fcc8
说明:使用pip或anaconda等方式安装的预编译好的tensorflow没有AVX2指令集加速,通过手动编译可以更好的利用GPU。但是如果没有AVX或者GPU的话,手动编译几乎没有优势。
目前,官方只提供了Ubuntu和Mac OS X的编译支持,在Windows下可以通过Bazel和CMake两种方式进行编译,但只是 “highly experimental”,可能会遇到各种错误。
可供参考的其他安装方法:
http://blog.csdn.net/wx7788250/article/details/60877166
http://blog.csdn.net/JerryZhang__/article/details/60763161
开始安装
前提条件
windows平台安装TF,要求python版本号必须为3.5.x or 3.6.x,并且必须选择为x64平台的。
必须安装Microsoft Visual C++ 2015 Redistributable Update 3,否则会执行失败,报错内容稍后提到(missing MSVCP140.dll)。
下载链接:
VC++安装包下载:https://www.microsoft.com/en-us/download/details.aspx?id=53587
python:https://www.python.org/downloads/release/python-362/
安装Bazel:https://docs.bazel.build/versions/master/install-windows.html
安装Chocolatey:https://chocolatey.org/install
配置本地环境
1.VC++安装包下载:
https://www.microsoft.com/en-us/download/details.aspx?id=53587
2.安装python 3.6.x,
https://www.python.org/downloads/release/python-362/
3.安装Cuda和CuDNN
谷歌提供了CPU和GPU版本的TensorFlow,使用GPU版本的TensorFlow进行训练需要NVIDIA显卡,并安装Cuda和CnDNN,如果使用CPU版本的,可跳过这一步。
CUDA安装:https://developer.nvidia.com/cuda-downloads
按照提示直接安装即可。
CuDNN安装:https://developer.nvidia.com/cudnn
这一步需要注册一个账号,并填写一个问卷,完成后即可下载。CuDNN下载后解压,添加 [yourPath]\cuda 和[yourPath]\cuda\bin 到环境变量 并按照如下操作:
[yourPath]\cuda\bin\cudnn64_5.dll —> (拷贝至)
[yourPath]\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
[yourPath]\cuda\include\cudnn.h —> (拷贝至)
[yourPath]\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include
[yourPath]\cuda\lib\x64\cudnn.lib —>(拷贝至)
[yourPath]\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64
4.查看CUDA版本
在命令提示符中查看CUDA8的版本
C:\Users\Administrator.chenbo-ovr097b6>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Mon_Jan__9_17:32:33_CST_2017
Cuda compilation tools, release 8.0, V8.0.60
5.查看GPU设备信息
运行deviceQuery.exe,查看GPU设备信息
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\extras\demo_suite>device
Query.exe
deviceQuery.exe Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Tesla M60"
CUDA Driver Version / Runtime Version 9.0 / 8.0
CUDA Capability Major/Minor version number: 5.2
Total amount of global memory: 8108 MBytes (8501460992 bytes)
(16) Multiprocessors, (128) CUDA Cores/MP: 2048 CUDA Cores
GPU Max Clock rate: 1178 MHz (1.18 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 2097152 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536),3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
CUDA Device Driver Mode (TCC or WDDM): TCC (Tesla Compute Cluster Driver)
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 21
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = Tesla M60
Result = PASS
6.通过pip安装TensorFlow
6.1安装过程
pip是Python包管理工具,可以很方便的安装一些软件。我们在安装Python的时候已经自动安装了pip,现在可以直接在CMD中执行以下命令安装TensorFlow。
CPU版本: pip install tensorflow
GPU版本: pip install tensorflow-gpu
注意:安装python新版本后,可能会不带pip因此需要先安装pip,然后再安装tensorflow
pip安装方法:
python -m ensurepip //安装pip
python -m pip install tensorflow //安装TF for CPU框架
python -m pip install tensorflow-gpu //安装TF for GPU框架
6.2验证
python
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session() //看到GPU显存信息
>>> print(sess.run(hello))
7 通过Anaconda安装TensorFlow
7.1 安装Anaconda
下载Anaconda中最新版本:https://www.anaconda.com/download/
7.2 打开conda客户端,构建conda环境
C:> conda create -n tensorflow python=3.6
7.3 激活conda环境
C:> activate tensorflow
7.4 安装框架
(tensorflow)C:> pip install --ignore-installed --upgrade tensorflow //安装TF for CPU框架
(tensorflow)C:> pip install --ignore-installed --upgrade tensorflow-gpu //安装TF for GPU框架
7.5 conda环境中验证
python
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session() //看到GPU显存信息
>>> print(sess.run(hello))
8.完成