离散数学第一章---集合(一)

目录

  • 集合的概念与表示
  • 集合的关系与运算
  • 集合关系的具象表示
  • 集合的幂集、分划与覆盖
  • 多重集合
  • 实例解析


一. 集合的概念与性质

(1)集合与元素的概念

  集合是数学中的一个最基本的概念,就像公理一样,我们通常只是给予一种描述。
即:当把一些确定的、彼此不同的事物作为一个整体来考虑时,这个整体便称为一个集合。

集合中所包含的个体,称为元素。

(2)集合中元素的性质

一般来说,集合中的元素有着确定性,互异性与无序性,

这里的确定性是指元素只能包含或不包含于集合中,不存在模棱两可的状态,
互异性是指集合中的元素不相同,
无序性是指集合中元素的排列方式不影响集合的同异。

(3)对无序性、互异性的补充讲解

无序性是指元素的排列顺序不影响集合,不同排列顺序下集合仍然是这一个,但是,如果是有序数组,则会影响。如果有n个元素,则称为有序n元组。

互异性是指集合中的元素互不相同,但是,在实际情况下,会出现相同元素的情况,这时引入了多重集合,这在后面会讲到。

(4)集合中元素的个数与比较

设集合A,集合A中元素的个数记作#A,即A的基数 。
根据集合的个数,将集合分为有限集和无限集,
空集是指集合中没有元素的集合,现在一般认为空集是有限集,
有限集的定义,是指集合中的元素是有限的,更精确的定义是不可与其自身的真子集对等的非空集合,以及空集

有限集个数的比较是简单的,直接比较个数的大小即可,
对于无限集合,可以采用元素的对应方式来获得,
例如正整数集和从0到1的开区间中所有数这两个集合,

首先,建立对应关系,
从2到正无穷,对应1/n,n是从2到正无穷的整数,显然1/n是在这个开区间内的,
而根据无理数的定义,无理数不可由分数表示,故任取一个无理数:根号二分之一,来对应1,
则开区间内仍有元素无法与正整数集中的元素匹配,故开区间(0,1)比正整数集的元素多。


二. 集合的表示方法

(1)集合的表示方法一般有列举法和描述法。

列举法是用花括号弧将元素逐个列举出来,例如A={a,b,c},
而描述法,则是借用某种规则,将所有的元素限定对应,例如B={x|1<x<2}。

(2)集合中元素的表示

设集合A={x|1<x<5}, 则若元素a=3,b=6,则a在集合中而b不在,
可表示为a∈A, b∉A。

三. 特殊的集合

集合 描述 数学符号
空集 集合中不包含任何元素 Ø
整数集 元素为所有整数 Z
正整数集 元素为所有正整数 N*或N+
自然数集 元素为所有自然数,包含0 N
正有理数集 元素为所有正有理数集合 Q+
负有理数集 元素为所有负有理数 Q-
有理数集 元素为所有有理数 Q
实数集 元素为所有实数 R
复数集 元素为所有的复数 C
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343