情感分析之TF-IDF算法

http://mini.eastday.com/bdmip/180414224336264.html

在这篇文章中,主要介绍的内容有:

1、将单词转换为特征向量

2、TF-IDF计算单词关联度

文本的预处理和分词。

如何将单词等分类数据转成为数值格式,以方便我们后面使用机器学习来训练模型。

一、将单词转换为特征向量

词袋模型(bag-of-words model):将文本以数值特征向量的形式来表示。主要通过两个步骤来实现词袋模型:

1、为整个文档集(包含了许多的文档)上的每个单词创建一个唯一的标记。

2、为每个文档构建一个特征向量,主要包含每个单词在文档上的出现次数。

注意:由于每个文档中出现的单词数量只是整个文档集中很少的一部分,因此会有很多的单词没有出现过,就会被标记为0。所以,特征向量中大多数的元素就会为0,就会产生稀疏矩阵。

下面通过sklearn的CountVectorizer来实现一个词袋模型,将文档转换成为特征向量


通过count.vocabulary_我们可以看出每个单词所对应的索引位置,每一个句子都是由一个6维的特征向量所组成。其中,第一列的索引为0,对应单词"and","and"在第一和二条句子中没有出现过,所以为0,在第三条句子中出现过一些,所以为1。特征向量中的值也被称为原始词频(raw term frequency)简写为tf(t,d),表示在文档d中词汇t的出现次数。

注意:在上面词袋模型中,我们是使用单个的单词来构建词向量,这样的序列被称为1元组(1-gram)或单元组(unigram)模型。除了一元组以外,我们还可以构建n元组(n-gram)。n元组模型中的n取值与特定的应用场景有关,如在反垃圾邮件中,n的值为3或4的n元组可以获得比较好的效果。下面举例说明一下n元组,如在"the weather is sweet"这句话中,

1元组:"the"、"weather"、"is"、"sweet"。

2元组:"the weather"、"weather is"、"is sweet"。

在sklearn中,可以设置CountVecorizer中的ngram_range参数来构建不同的n元组模型,默认ngram_range=(1,1)。

sklearn通过CountVecorizer构建2元组



二、TF-IDF计算单词关联度

在使用上面的方法来构建词向量的时候可能会遇到一个问题:一个单词在不同类型的文档中都出现,这种类型的单词其实是不具备文档类型的区分能力。我们通过TF-IDF算法来构建词向量,从而来克服这个问题。

词频-逆文档频率(TF-IDF,term frequency-inverse document frequency):tf-idf可以定义为词频×逆文档频率

其中tf(t,d)表示单词t在文档d中的出现次数,idf(t,d)为逆文档频率,计算公式如下

其中,nd表示文档的总数,df(t,d)表示包含单词t的文档d的数量。分母中加入常数1,是为了防止df(t,d)=0的情况,导致分母为0。取log的目的是保证当df(t,d)很小的时候,不会导致idf(t,d)过大。

通过sklearn的TfidfTransformer和CountVectorizer来计算tf-idf


可以发现"is"(第二列)和"the"(第六列),它们在三个句子中都出现过,它们对于文档的分类所提供的信息并不会很多,所以它们的tf-idf的值相对来说都是比较小的。

注意:sklearn中的TfidfTransformer的TF-IDF的计算与我们上面所定义TF-IDF的公式有所不同,sklearn的TF-IDF计算公式

通常在计算TF-IDF之前,会对原始词频tf(t,d)做归一化处理,TfidfTransformer是直接对tf-idf做归一化。TfidfTransformer默认使用L2归一化,它通过与一个未归一化特征向量L2范数的比值,使得返回向量的长度为1,计算公式如下:


下面通过一个例子来说明sklearn中的TfidfTransformer的tf-idf的计算过程,以上面的第一句话"The sun is shining"为例子

1、计算原始词频

a、单词所对应的下标

b、计算第三句话的原始词频tf(t,d)

c、计算逆文档频率idf(t,d)


注意:其他的词在计算tf-idf都是0,因为原始词频为0,所以就不需要计算idf了,log是以自然数e为底。

d、计算tf-idf


所以,第一个句子的tf-idf特征向量为[0,1,1.29,1.29,0,1,0]

e、tf-idf的L2归一化


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容