TensorFlow

使用 TensorFlow, 你必须明白 TensorFlow:

使用图 (graph) 来表示计算任务.

在被称之为会话 (Session)的上下文 (context) 中执行图.

使用 tensor 表示数据.

通过变量 (Variable)维护状态.

使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.

综述

TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为op(operation 的缩写). 一个 op 获得 0 个或多个Tensor, 执行计算, 产生 0 个或多个Tensor. 每个 Tensor 是一个类型化的多维数组. 例如, 你可以将一小组图像集表示为一个四维浮点数数组, 这四个维度分别是[batch, height, width, channels].

一个 TensorFlow 图描述了计算的过程. 为了进行计算, 图必须在会话 里被启动. 会话 将图的 op 分发到诸如 CPU 或 GPU 之类的 设备上, 同时提供执行 op 的方法. 这些方法执行后, 将产生的 tensor 返回. 在 Python 语言中, 返回的 tensor 是numpyndarray 对象; 在 C 和 C++ 语言中, 返回的 tensor 是 tensorflow::Tensor 实例.

计算图

TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段. 在构建阶段, op 的执行步骤 被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op.

例如, 通常在构建阶段创建一个图来表示和训练神经网络, 然后在执行阶段反复执行图中的训练 op.

TensorFlow 支持 C, C++, Python 编程语言. 目前, TensorFlow 的 Python 库更加易用, 它提供了大量的辅助函数来简化构建图的工作, 这些函数尚未被 C 和 C++ 库支持.

三种语言的会话库 (session libraries) 是一致的.

构建图

构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如常量 (Constant). 源 op 的输出被传递给其它 op 做运算.

Python 库中, op 构造器的返回值代表被构造出的 op 的输出, 这些返回值可以传递给其它 op 构造器作为输入.

TensorFlow Python 库有一个默认图 (default graph), op 构造器可以为其增加节点. 这个默认图对 许多程序来说已经足够用了. 阅读Graph 类文档 来了解如何管理多个图.

import tensorflow as tf

# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点

# 加到默认图中.

#

# 构造器的返回值代表该常量 op 的返回值.

matrix1 = tf.constant([[3., 3.]])

# 创建另外一个常量 op, 产生一个 2x1 矩阵.

matrix2 = tf.constant([[2.],[2.]])

# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.

# 返回值 'product' 代表矩阵乘法的结果.

product = tf.matmul(matrix1, matrix2)

默认图现在有三个节点, 两个constant()op, 和一个matmul()op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的 结果, 你必须在会话里启动这个图.

在一个会话中启动图

构造阶段完成后, 才能启动图. 启动图的第一步是创建一个Session对象, 如果无任何创建参数, 会话构造器将启动默认图.

欲了解完整的会话 API, 请阅读Session 类.

# 启动默认图.

sess = tf.Session()

# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数.

# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回

# 矩阵乘法 op 的输出.

#

# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.

#

# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.

#

# 返回值 'result' 是一个 numpy `ndarray` 对象.

result = sess.run(product)

print result

# ==> [[ 12.]]

# 任务完成, 关闭会话.

sess.close()

Session对象在使用完后需要关闭以释放资源. 除了显式调用 close 外, 也可以使用 "with" 代码块 来自动完成关闭动作.

with tf.Session() as sess:

  result = sess.run([product])

  print result

在实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU). 一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测. 如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.

如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU 默认是不参与计算的. 为了让 TensorFlow 使用这些 GPU, 你必须将 op 明确指派给它们执行.with...Device语句用来指派特定的 CPU 或 GPU 执行操作:

with tf.Session() as sess:

  with tf.device("/gpu:1"):

    matrix1 = tf.constant([[3., 3.]])

    matrix2 = tf.constant([[2.],[2.]])

    product = tf.matmul(matrix1, matrix2)

    ...

设备用字符串进行标识. 目前支持的设备包括:

"/cpu:0": 机器的 CPU.

"/gpu:0": 机器的第一个 GPU, 如果有的话.

"/gpu:1": 机器的第二个 GPU, 以此类推.

交互式使用

文档中的 Python 示例使用一个会话Session来 启动图, 并调用Session.run()方法执行操作.

为了便于使用诸如IPython之类的 Python 交互环境, 可以使用InteractiveSession代替Session类, 使用Tensor.eval()Operation.run()方法代替Session.run(). 这样可以避免使用一个变量来持有会话.

# 进入一个交互式 TensorFlow 会话.

import tensorflow as tf

sess = tf.InteractiveSession()

x = tf.Variable([1.0, 2.0])

a = tf.constant([3.0, 3.0])

# 使用初始化器 initializer op 的 run() 方法初始化 'x'

x.initializer.run()

# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果

sub = tf.sub(x, a)

print sub.eval()

# ==> [-2. -1.]

Tensor

TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor. 你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和 一个 shape. 想了解 TensorFlow 是如何处理这些概念的, 参见Rank, Shape, 和 Type.

变量

Variablesfor more details. 变量维护图执行过程中的状态信息. 下面的例子演示了如何使用变量实现一个简单的计数器. 参见变量章节了解更多细节.

# 创建一个变量, 初始化为标量 0.

state = tf.Variable(0, name="counter")

# 创建一个 op, 其作用是使 state 增加 1

one = tf.constant(1)

new_value = tf.add(state, one)

update = tf.assign(state, new_value)

# 启动图后, 变量必须先经过`初始化` (init) op 初始化,

# 首先必须增加一个`初始化` op 到图中.

init_op = tf.initialize_all_variables()

# 启动图, 运行 op

with tf.Session() as sess:

  # 运行 'init' op

  sess.run(init_op)

  # 打印 'state' 的初始值

  print sess.run(state)

  # 运行 op, 更新 'state', 并打印 'state'

  for _ in range(3):

    sess.run(update)

    print sess.run(state)

# 输出:

# 0

# 1

# 2

# 3

代码中assign()操作是图所描绘的表达式的一部分, 正如add()操作一样. 所以在调用run()执行表达式之前, 它并不会真正执行赋值操作.

通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中. 在训练过程中, 通过重复运行训练图, 更新这个 tensor.

Fetch

为了取回操作的输出内容, 可以在使用Session对象的run()调用 执行图时, 传入一些 tensor, 这些 tensor 会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点state, 但是你也可以取回多个 tensor:

input1 = tf.constant(3.0)

input2 = tf.constant(2.0)

input3 = tf.constant(5.0)

intermed = tf.add(input2, input3)

mul = tf.mul(input1, intermed)

with tf.Session() as sess:

  result = sess.run([mul, intermed])

  print result

# 输出:

# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]

需要获取的多个 tensor 值,在 op 的一次运行中一起获得(而不是逐个去获取 tensor)。

Feed

上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制 可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor.

feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为run()调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 "feed" 操作, 标记的方法是使用 tf.placeholder() 为这些操作创建占位符.

input1 = tf.placeholder(tf.float32)

input2 = tf.placeholder(tf.float32)

output = tf.mul(input1, input2)

with tf.Session() as sess:

  print sess.run([output], feed_dict={input1:[7.], input2:[2.]})

# 输出:

# [array([ 14.], dtype=float32)]

for a larger-scale example of feeds. 如果没有正确提供 feed,placeholder()操作将会产生错误. MNIST 全连通feed 教程(source code) 给出了一个更大规模的使用 feed 的例子.

阅读使用GPU章节, 了解 TensorFlow GPU 使用的更多信息.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容