神经概率语言模型

读了Bengio的《A Neural Probabilistic Language Model》,颇有感悟,以此文记一下我的读后感。

一、语言模型
  1. 语言模型是什么
    语言模型是自然语言处理的一大利器,是NLP领域一个基本却又重要的任务。它的主要功能就是计算一个词语序列构成一个句子的概率,或者说计算一个词语序列的联合概率,这可以用来判断一句话出现的概率高不高,符不符合我们的表达习惯,它是否通顺,这句话是不是正确的。
  2. 语言模型有什么用
    语言模型可以用于机器翻译、语音识别、音字转换和文本校对等诸多NLP任务中,它可以从多个候选句子中选出一个最为靠谱的结果。
  3. 语言模型的发展
    3.1 语言模型的基本形态
    基本形态很简单,就是按照乘法定理计算词语序列的联合概率,但这样模型参数就太多了,会导致过拟合,这是因为发生了维数灾难。
    3.2 N-Gram模型
    N-Gram模型是一种经典好用的语言模型,它基于N-1阶马尔可夫链,认为当前词仅与前N-1个词有关,这就解决了维数灾难这个问题。使用N-Gram模型时,由于训练语料规模的限制,会有许多未见语言现象,存在数据稀疏的问题,需要采用数据平滑的方法避免值为零的模型参数(也就是条件概率)出现。
    3.3 DNN语言模型
    其实现在只看了Bengio的这篇文章,也就是如何用神经网络构建N-Gram模型。
二、用神经网络构建N-Gram模型

N-Gram模型需要精心设计平滑方法(因为数据稀疏的问题),为了解决这个问题,Bengio提出用神经网络来构建语言模型,也就是用神经网络来估计下一个词是各个词的条件概率。用神经网络构建语言模型,还能顺便得到词的分布式表示形式——word embedding,由于词的相似度可以通过词向量的距离来衡量,也就是计算向量的余弦相似度,于是未见词语序列的概率可以用相似词进行估计,也就避免了数据稀疏的问题。
Bengio将用神经网络构建N-Gram模型的任务转换成给定前N-1个词然后预测下一个词的任务,这是在无标注文本上以无监督学习的方式构建语言模型。
看神经网络相关的文章,要抓住重点,那就是:模型的输入输出,模型的结构,模型所对应的优化问题,以及模型为什么能够work。

  1. 神经网络模型的输入输出
    将前N-1个词对应的词向量首尾拼接作为神经网络的输入,神经网络的输出有V个节点,这些节点的输出经过softmax激活函数后,就归一化为给定前N-1个词,下一个词是该词的条件概率,于是就得到了N-Gram模型的参数,也就构建了N-Gram模型。
  2. 模型结构
    包括两部分,分别是Embedding层和前馈神经网络。
    Embedding层:负责将词语转化为词向量。
    神经网络:这是一个三层的前馈神经网络,包括输入层,隐藏层和输出层,都是全连接层。输入层有(N-1)m个节点,隐藏层有h个节点,输出层有V个节点,隐藏层的激活函数是双曲正切函数tanh(),这是一个S型函数,输出层的激活函数是softmax。
  3. 优化问题
    大部分机器学习算法其实都是一个最优化问题,神经网络也不例外。这里的目标函数是语料库的对数似然函数加上一个正则项,优化变量是模型参数,通过随机梯度提升的方法,调整参数,使得目标函数达到最大即可。
    目标函数中的语料库对数似然函数其实就是对数条件概率的累加,也就是模型的输出取对数后的累加。
    注:语料库的似然函数,P(corpus)=P(S1)P(S2)...P(Sn),句子出现的概率又可以展开为模型输出的连乘形式,取对数是为了简化计算,将乘法计算变为加法计算。
    PS:在实际应用中,例如基于TensorFlow或者Keras训练LM,我们一般都先基于语料生成输入输出对,即输入<bos>+sentence,输出sentence+<eos>,然后使用这些输入输出对训练多输入多输出的模型。
  4. why it work
    我们通过语料库,以无监督学习的方式构建了一个语言模型,那么我们的训练语料当然会契合语言模型,于是可以认为这些训练语料是由这个语言模型生成的(事实上,LM也可以生成文本)。现在语言模型的参数未知,但是我们有结果,于是这是一个统计推断的问题,使用MLE估计模型参数即可。再来看神经网络的目标函数,现在就是要调整模型参数使得出现该训练语料的概率达到最大。

Bengio的这种用神经网络构建N-Gram模型的方法,想要计算句子出现的概率还是要把条件概率进行相乘,这种方法的最大贡献我认为可以有两个:一是使用NN构建N元模型,基于相似词语解决数据稀疏的问题;二是给出了一种训练词向量的方法。

转载请注明如下内容:

文章来自简书,作者:就是杨宗
原文链接:http://www.jianshu.com/p/3f22fc76a9e5

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容