使用结巴分词和word2vec对文本处理

由于项目需要,采集了一些助勃药品或喷剂的商品评论,总的数据量大概是在57W条左右,评论内容大概是这样子的:

性价比很高的,质量很是值得信赖,宝贝非常棒,现在用了这个之后差不多能坚持三十分钟,特别的历害,是正品,有保障,效果真是棒棒达
龙水延时喷剂产品不错,简直666的飞起来了,喷了两就可以干个二三十分钟,硬了很多好多,真的很厉害
延时效果相当的好,每次使用了之后都能做30分钟以上,做的太舒服了,老婆都说用了这个好幸福的
有延时效果极好,每次使用这个延时喷剂,都有40分钟以上,感觉真的超棒的,也是非常的舒服啊!
效果相当好,原来10来分钟,昨天收到货,晚上下班回去,试了下,延时30分钟不是问题
试了下,延时效果不错,物流速度也是好评哈,性价比挺好的
好评!效果很好!持久不麻木
用的非常好,非常感谢店家!

一行数据就是一条评论,使用python结巴分词:

' '.join(jieba.cut(txt))

得到以下结果:

性价比 很 高 的 , 质量 很 是 值得 信赖 , 宝贝 非常 棒 , 现在 用 了 这个 之后 差不多 能 坚持 三十分钟 , 特别 的 历害 , 是 正品 , 有 保障 , 效果 真是 棒棒 达
龙 水 延时 喷剂 产品 不错 , 简直 666 的 飞 起来 了 , 喷 了 两 就 可以 干个 二三十 分钟 , 硬 了 很多 好多 , 真的 很 厉害
延时 效果 相当 的 好 , 每次 使用 了 之后 都 能 做 30 分钟 以上 , 做 的 太 舒服 了 , 老婆 都 说 用 了 这个 好 幸福 的
有 延时 效果 极好 , 每次 使用 这个 延时 喷剂 , 都 有 40 分钟 以上 , 感觉 真的 超棒 的 , 也 是 非常 的 舒服 啊 !
效果 相当 好 , 原来 10 来 分钟 , 昨天 收到 货 , 晚上 下班 回去 , 试 了 下 , 延时 30 分钟 不是 问题
试 了 下 , 延时 效果 不错 , 物流 速度 也 是 好评 哈 , 性价比 挺 好 的
好评 ! 效果 很 好 ! 持久 不 麻木
用 的 非常 好 , 非常感谢 店家 !

把分词结果保存为utf8格式的文本文件,然后使用word2vec来训练模型:

from gensim.models import word2vec
s=word2vec.Text8Corpus('result.txt')
model=word2vec.Word2Vec(s)#这里使用默认的参数训练

训练完之后主要是用来查看相似的词,如下:

model.most_similar(u'灼热感',topn=20)
#相似词结果列表
#'热感',0.6933082342147827
#'麻麻',0.6547691822052002
#'火辣',0.651293158531189
#'辣辣的',0.651107668876648
#'灼烧',0.6483184099197388
#'刺痛',0.6444294452667236
#'烧',0.643839418888092
#'刺激性',0.6332861185073853
#'火辣辣',0.631696343421936
#'微微',0.6278106570243835
#'麻木感',0.6217052936553955
#'灼热',0.6207054853439331
#'辣感',0.6127525568008423
#'发热',0.6119084358215332
#'起色',0.600088357925415
#'凉爽',0.5898377895355225
#'辣',0.589654803276062
#'点点',0.5883890390396118
#'烧灼感',0.583778977394104
#'热',0.5823389291763306

然后我们再可以根据这些词语做一个词频统计:

灼热感,113
麻麻,730
火辣,69
辣辣的,159
灼烧,73
刺痛,180
刺激性,412
麻木感,2867
灼热,39
辣感,10
发热,518
起色,40
凉爽,73

做出图表可以看出是这样子的:


男性助勃用品使用感受(部分)

从图表上我们可以直观的看出,超过一半以上的评论描述使用后jj表现为麻木感、发热和刺痛。。。
当然,这里的数据和图表仅是部分展示,还并没有做更多的词语挖掘和整理,仅做参考。。。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容