Machine-Learning-Day-1

数据预处理

Day 1的任务是数据预处理。开始任务~

Step1 Import the libs

Screen Shot 2019-01-04 at 2.54.46 PM.png

Numpy包含数学函数, Pandas是用来管理导入数据集和对数据集进行操作.
如果和我一样对Pandas一窍不通. 可以用这篇文章来学习.pandas学习
code如下:

#Step 1: Import the libs
import numpy as numpy
import pandas as pd
Step2 Import dataset
Screen Shot 2019-01-04 at 2.54.52 PM.png

数据集一般是csv格式. 每行为一条记录. read_csv后csv中的数据被保存到dataframe中.
然后我们从dataframe中分离出自变量和因变量, 分别为矩阵和向量.
code如下:

#Step 2: Import dataset
dataset = pd.read_csv('../datasets/Data.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : , 3].values
print("Step 2: Importing dataset")
print("X")
print(X)
print("Y")
print(Y)
Step3 Handling the missing data
Screen Shot 2019-01-04 at 2.54.57 PM.png

因为数据极少很规范, 所以我们通常需要对缺失的数据进行处理. 这样就不会在机器学习的时候被bad data所影响. 一般用Imputer来处理. 而且我们一般用平均数或者中位数来替换缺失的值. 例子里缺失值的占位表现形式是NaN.
code如下:

#step 3: Handling the missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0)
imputer = imputer.fit(X[ : , 1:3])
X[ : , 1:3] = imputer.transform(X[ : , 1:3])
print("---------------------")
print("Step 3: Handling the missing data")
print("step2")
print("X")
print(X)
Step4 Encoding categorical data
Screen Shot 2019-01-04 at 2.55.04 PM.png

分类数据一般不能是label. 需要是数字. 像例子中的因变量为YES和NO.我们需要用LabelEncoder类来转换.

  • LabelEncoder: 编码值介于0和n_classes-1之间的标签, 还可用于将非数字标签(只要它们可比较)转换为数字标签.
  • OneHotEncoder: 使用K-K方案对分类整数特征进行编码.
    code如下:
#Step 4: Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[ : , 0] = labelencoder_X.fit_transform(X[ : , 0])
#Creating a dummy variable
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
labelencoder_Y = LabelEncoder()
Y =  labelencoder_Y.fit_transform(Y)
print("---------------------")
print("Step 4: Encoding categorical data")
print("X")
print(X)
print("Y")
print(Y)
Step5 Splitting the datasets into training sets and Test sets
Screen Shot 2019-01-04 at 2.55.12 PM.png

数据集会被拆分成两部分, 一部分为训练集, 用来训练模型. 一部分为测试集, 用来测试训练模型的性能. 一般为80:20的原则.
code如下:

#Step 5: Splitting the datasets into training sets and Test sets
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split( X , Y , test_size = 0.2, random_state = 0)
print("---------------------")
print("Step 5: Splitting the datasets into training sets and Test sets")
print("X_train")
print(X_train)
print("X_test")
print(X_test)
print("Y_train")
print(Y_train)
print("Y_test")
print(Y_test)
Step6 Feature Scaling
Screen Shot 2019-01-04 at 2.55.17 PM.png

在机器学习中, 高数量级特征比低数量级特征有更高的权重.
我们用特征标准化或Z分布解决这个问题.
code如下:

#Step 6: Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
print("---------------------")
print("Step 6: Feature Scaling")
print("X_train")
print(X_train)
print("X_test")
print(X_test)
Github Code:

Day-1 Code

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容