成对交易模型——基本概念

平稳过程 Stationary process

在数学中,平稳过程(英语:Stationary process),又称严格平稳过程(英语:Strict(ly) stationary process)或强平稳过程(英语:Strong(ly) stationary process)是一种特殊的随机过程,在其中任取一段期间或空间(t=t_1-t_k)里的联合概率分布,与将这段期间任意平移后的新期间(t = t_1 + \tau - t_k + \tau)之联合概率分布相等。这样,数学期望和方差这些参数也不随时间或位置变化。例如,白噪声(AWGN)就是平稳过程,铙钹的敲击声是非平稳的。尽管铙钹的敲击声基本上是白噪声,但是这个噪声随着时间变化:在敲击前是安静的,在敲击后声音逐渐减弱。在时间串行分析中稳态作为一个工具使用,在这里原始数据经常被转换为平稳态,例如经济学数据经常随着季节或者价格水平变化。如果这些过程是平稳过程与一个或者多个呈现一定趋势的过程的线性组合,那么这些过程就可以表述为趋势平稳。将这些数据进行转换保留平稳数据用于分析的过程称为解趋势(de-trending)。采样空间也是离散的离散时间平稳过程称为Bernoulli scheme,离散采样空间中每个随机变量可能取得 N'个可能值中的任意一个。当N=2的时候,这个过程叫做伯努利过程。

如果有一个信号 x 对于所有 k 都满足以下条件,则它就是一个平稳过程:
p(x_{n+k}, n+k, x_{m+k}, m+k)= p (x_n, n, x_m, m)

也就是说,x [n] 和 x [m] 的联合概率分布 (Joint Distribution),只和 m 和 n 的时间差有关,和其他参数都没有关系。另外,上述对于平稳过程的定义,在 m 等于 n 的情况下,也同样会满足上述情况,因此,如果是一个平稳随机过程的话,应该也满足以下条件:
p(x_{n+k}, n+k)= p (x_n, n)
也就是说,一个平稳过程的概率密度函数(PDF)在任意时间点 n 都是相同的,也就是说,这会是一个和当下时间点没有关系(time independent)的函式。因此,根据上面的定义,我们可以推导出,对于平稳过程的自相关函数(autocorrelation)也只和时间差有关,和本身的时间点没有关系。如果假设时间差是 k,则可以得到公式如下:
\phi_{xx}(n+k,n)=\phi_{xx}(k)=\epsilon\{x_{n+k}x_n^* \}
此外,借由这些公式也可以得知,平稳过程的平均数(mean)和方差(variance)也都和时间点 n 没有关系,在任意时间点的值都是相同的,可以表示成如下的形式:
m_x=m_{x_n}=\epsilon\{{x_n}\}
{\sigma_x}^2=\epsilon\{(x_n-m_x)^2\}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容