kafka生产环境规划-kafka商业环境实战

版权声明:本套技术专栏是作者(秦凯新)平时工作的总结和升华,通过从真实商业环境抽取案例进行总结和分享,并给出商业应用的调优建议和集群环境容量规划等内容,请持续关注本套博客。版权声明:禁止转载,欢迎学习。

kafka线上真实环境实战及调优进阶系列

kafka真实环境部署规划

1. 操作系统选型

因为kafka服务端代码是Scala语言开发的,因此属于JVM系的大数据框架,目前部署最多的3类操作系统主要由Linux ,OS X 和Windows,但是部署在Linux数量最多,为什么呢?因为I/O模型的使用和数据网络传输效率两点。

  • 第一:Kafka新版本的Clients在设计底层网络库时采用了Java的Select模型,而在Linux实现机制是epoll,感兴趣的读者可以查询一下epoll和select的区别,明确一点就是:kafka跑在Linux上效率更高,因为epoll取消了轮询机制,换成了回调机制,当底层连接socket数较多时,可以避免CPU的时间浪费。
  • 第二:网络传输效率上。kafka需要通过网络和磁盘进行数据传输,而大部分操作系统都是通过Java的FileChannel.transferTo方法实现,而Linux操作系统则会调用sendFile系统调用,也即零拷贝(Zero Copy 技术),避免了数据在内核地址空间和用户程序空间进行重复拷贝。

2. 磁盘类型规划

  • 机械磁盘(HDD)
    一般机械磁盘寻道时间是毫秒级的,若有大量随机I/O,则将会出现指数级的延迟,但是kafka是顺序读写的,因此对于机械磁盘的性能也是不弱的,所以,基于成本问题可以考虑。
  • 固态硬盘(SSD)
    读写速度可观,没有成本问题可以考虑。
  • JBOD (Just Bunch Of Disks ) 经济实惠的方案,对数据安全级别不是非常非常高的情况下可以采用,建议用户在Broker服务器上设置多个日志路径,每个路径挂载在不同磁盘上,可以极大提升并发的日志写入速度。
  • RAID 磁盘阵列
    常见的RAID是RAID10,或者称为(RAID 1+0) 这种磁盘阵列结合了磁盘镜像和磁盘带化技术来保护数据,因为使用了磁盘镜像技术,使用率只有50%,注意,LinkedIn公司采用的就是RAID作为存储来提供服务的。那么弊端在什么地方呢?如果Kafka副本数量设置为3,那么实际上数据将存在6倍的冗余数据,利用率实在太低。因此,LinkedIn正在计划更改方案为JBOD.

3. 磁盘容量规划

我们公司物联网平台每天大约能够产生一亿条消息,假设副本replica设置为2 (其实我们设置为3),数据留存时间为1周,平均每条上报事件消息为1K左右,那么每天产生的消息总量为:1亿 乘 2 乘 1K 除以 1000 除以 1000 =200G磁盘。预留10%的磁盘空间,为210G。一周大约为1.5T。采用压缩,平均压缩比为0.5,整体磁盘容量为0.75T。
关联因素主要有:

  • 新增消息数
  • 副本数
  • 是否启用压缩
  • 消息大小
  • 消息保留时间

4. 内存容量规划

kafka对于内存的使用,并不过多依赖JVM 内存,而是更多的依赖操作系统的页缓存,consumer若命中页缓存,则不用消耗物理I/O操作。一般情况下,java堆内存的使用属于朝生夕灭的,很快会被GC,一般情况下,不会超过6G,对于16G内存的机器,文件系统page cache 可以达到10-14GB。

  • 怎么设计page cache,可以设置为单个日志段文件大小,若日志段为10G,那么页缓存应该至少设计为10G以上。
  • 堆内存最好不要超过6G。

5. CPU选择规划

kafka不属于计算密集型系统,因此CPU核数够多就可以,而不必追求时钟频率,因此核数选择最好大于8。

6. 网络带宽决定Broker数量

带宽主要有1Gb/s 和10 Gb/s 。我们可以称为千兆位网络和万兆位网络。举例如下:
我们的物联网系统一天每小时都要处理1Tb的数据,我们选择1Gb/b带宽,那么需要选择多少机器呢?

  • 假设网络带宽kafka专用,且分配给kafka服务器70%带宽,那么单台Borker带宽就是710Mb/s,但是万一出现突发流量问题,很容易把网卡打满,因此在降低1/3,也即240Mb/s。因为1小时处理1TTB数据,每秒需要处理292MB,1MB=8Mb,也就是2336Mb数据,那么一小时处理1TB数据至少需要2336/240=10台Broker数据。冗余设计,最终可以定为20台机器。

典型推荐

  • cpu 核数 32
  • 内存 32GB
  • 磁盘 3TB 7200转 SAS盘三块
  • 带宽 1Gb/s

结语

秦凯新 于深圳 2018-10-27

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343