LeetCode 494, 377, 518

LeetCode 494 Target Sum

链接:https://leetcode.com/problems/target-sum/

方法1:DFS + memo

时间复杂度:O(n * sum)
想法:经典题目,所以决定把所有做法全写一遍。第一种写法是DFS+memo,很多情况下DP的题可以用DFS+memo写成递归形式。这种写法其实想法非常简单,dfs携带(int[] nums, int index, int cur, int target),表示的是遍历到了index这个地方,现在算出来的值是cur,然后从这个地方到最后一共有多少种方案。所以对于每一层dfs,res = dfs(nums, index + 1, cur + nums[index], target) + dfs(nums, index + 1, cur - nums[index], target);,表示这个地方放+或-,然后进入下一个index的搜索。
代码:

class Solution {
    private int[][] memo = new int[1010][2010];
    
    public int findTargetSumWays(int[] nums, int target) {
        return dfs(nums, 0, 0, target);
    }
    
    private int dfs(int[] nums, int index, int cur, int target) {
        if (memo[index][cur + 1000] != 0) {
            return memo[index][cur + 1000] - 1;
        }
        
        if (index == nums.length) {
            if (cur == target) {
                memo[index][cur + 1000] = 2;
                return 1;
            }
            memo[index][cur + 1000] = 1;
            return 0;
        }
        
        int res = dfs(nums, index + 1, cur + nums[index], target) + dfs(nums, index + 1, cur - nums[index], target);
        memo[index][cur + 1000] = res + 1;
        
        return res;
    }
}

方法2:普通DP

时间复杂度:O(n * sum)
想法:把上面的普通递归写成普通DP。dp[i][j]表示在算到下标i的时候,求出来结果是j的方案有多少种。那么很显然dp[i][j] = dp[i - 1][j - nums[i]] + dp[i - 1][j + nums[i]],因为dp[i][j]里面的这个j,要么目前这个元素前面放的是+号,要么是-号,倒推回去上一个index,就一定只有dp[i - 1][j - nums[i]]和dp[i - 1][j + nums[i]]两个状态可以变到这里来。当然这个题放负号可能导致中间结果是负的,因此做好offset。
代码:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int n = nums.length;
        int sum = 0;
        for (int num : nums) sum += num;
        if (sum < Math.abs(target)) {
            return 0;
        }
        
        int doubleSum = sum << 1;
        int[][] dp = new int[n][doubleSum + 1];
        
        if (nums[0] == 0) {
            dp[0][sum] = 2;
        } 
        else {
            dp[0][sum - nums[0]] = 1;
            dp[0][sum + nums[0]] = 1;
        }
        
        for (int i = 1; i < n; i++) {
            for (int j = 0; j <= doubleSum; j++) {
                if (j - nums[i] >= 0) {
                    dp[i][j] += dp[i - 1][j - nums[i]];
                }
                if (j + nums[i] <= doubleSum) {
                    dp[i][j] += dp[i - 1][j + nums[i]];
                }
            }
        }
        
        return dp[n - 1][sum + target];
    }
}

方法3:背包DP

时间复杂度:O(n * sum)
想法:需要对这个问题进行重新分析。我反正是没想出来,方法来自花花酱的解答https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-494-target-sum/。假设原本拿到一个数组,里面有若干数字,题目说了里面数字全部>=0。因此假设原来的数的集合里面,后来前面加+的数集合是P,后来前面放-的数集合是N。那么sum(P) - sum(N) = target,则2 * sum(P) = target + sum(P) + sum(N) = target + sum of array。因此背包target + sum of array的一半。
代码:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0, n = nums.length;
        target = Math.abs(target);
        for (int num : nums) sum += num;
        if (sum < target || (target + sum) % 2 != 0) {
            return 0;
        }
        
        int aim = (target + sum) / 2;
        int[][] dp = new int[n + 1][aim + 1];
        dp[0][0] = 1;
        
        for (int i = 1; i <= n; i++) {
            for (int w = 0; w <= aim; w++) {
                dp[i][w] = dp[i - 1][w];
                if (w - nums[i - 1] >= 0) {
                    dp[i][w] += dp[i - 1][w - nums[i - 1]];
                }
            }
        }
        
        return dp[n][aim];
    }
}

方法4:背包DP的优化

时间复杂度:O(n * sum)
想法:可以继续做背包的优化,可以压缩到一维数组。这个也是比较常见的背包DP优化,对于物品的重量倒着遍历。
代码:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0, n = nums.length;
        target = Math.abs(target);
        for (int num : nums) sum += num;
        if (sum < target || (target + sum) % 2 != 0) {
            return 0;
        }
        
        int aim = (target + sum) / 2;
        int[] dp = new int[aim + 1];
        dp[0] = 1;
        
        for (int num : nums) {
            for (int w = aim; w >= num; w--) {
                dp[w] += dp[w - num];
            }
        }
        
        return dp[aim];
    }
}

LeetCode 377 Combination Sum IV

链接:https://leetcode.com/problems/combination-sum-iv/

方法1:DFS + memo

时间复杂度:O(sum(target/num_i)),分析来自https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-377-combination-sum-iv/
想法:就是说从题干中读题意,意识到他所说的方案是考虑元素顺序的,比方说[1,1,2]和[1,2,1]和[2,1,1],他认为是三种不同的方案。那这样就比较简单了,假设说nums = [1,2,3], target = 4,那么组成target=4的方案是可以由之前的方案推出来的,组成target=4的所有方案,就是target=1的各方案后面放3,target=2的方案后面放2,和target=3的方案后面放3合起来。因此可以有递归和递推两种写法。对于递归,target=4的时候递归调用target=3的结果,target=3的子问题又调target=2的结果。这次调完之后target=4这一问题还要调target=2的结果,因此每个target对应的值都会有被重复调用的可能,使用记忆化数组避免重复计算。但因为在递归当中,res += dfs(nums, target - nums[i]),每次减掉的是nums[i],而不用真的-1-1的这么调,因此理论上来说应该是要比一个一个往上推的DP快一些,但可能因为这题数据规模比较小,我也没观察到明显差别。
代码:

class Solution {
    int res = 0;
    int[] memo = new int[1010];
    
    public int combinationSum4(int[] nums, int target) {
        return dfs(nums, target);
    }
    
    private int dfs(int[] nums, int target) {
        if (memo[target] != 0) {
            return memo[target] - 1;
        }
        
        if (target == 0) {
            memo[0] = 2;
            return 1;
        }
        
        int res = 0;
        for (int i = 0; i < nums.length; i++) {
            if (nums[i] <= target) {
                res += dfs(nums, target - nums[i]);
            }
        }
        
        memo[target] = res + 1;
        return res;
    }
}

方法2:DP

时间复杂度:O(target * n)
想法:上面那个就是递归写法,这里无非就是把它写成递推的形式。
代码:

class Solution {
    public int combinationSum4(int[] nums, int target) {
        int[] dp = new int[target + 1];
        dp[0] = 1;
        
        for (int i = 1; i <= target; i++) {
            for (int num : nums) {
                if (i >= num) {
                    dp[i] += dp[i - num];
                }
            }
        }
        
        return dp[target];
    }
}

LeetCode 518 Coin Change 2

链接:https://leetcode.com/problems/coin-change-2/

方法:DP

时间复杂度:O(amount * n)
想法:递归的写法我就不写了,这种DP应该都能用递归+memo做。把这个题在这里搬出来就是为了跟上一题形成对比,体会两个题之间的区别。复习上一题的时候我就想到了Facebook tag里面的这一道题。直接贴代码。这个题的外循环是coin,内循环是amount,而上一题完全相反,为什么呢?
首先,两题的差别在于,对于第二题,[1,1,2]与[1,2,1]被认为是一种方案,所以这个题才是有一点Combination的看法。既然是一种方案,就没有我在上面那道题所说的,对于求target的所有方案,可以严格按照target之前的这些方案在后面加一个数构造出来,既然是combination,顺序就不再重要,因此上一问的做法放在这里是不对的。
第二点,下面这种写法并不是故意先枚举coins再循环amount,下面这种写法源于背包DP。因为原本来说,DP的思路是dp[i][j]为前i个数,能够构成j的方法总数,对于做背包DP的时候,我们是先循环i再循环j的,下面这个代码无非是发现dp数组可以用滚动数组的方法优化空间复杂度,因此变成了这样,背包DP为什么要先循环i,这里就为什么要先循环coin。
代码:

class Solution {
    public int change(int amount, int[] coins) {
        int[] dp = new int[amount + 1];
        dp[0] = 1;
        
        for (int coin : coins) {
            for (int i = coin; i <= amount; i++) {
                dp[i] += dp[i - coin];
            }
        }
        
        return dp[amount];
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容