TIM Algorithm

TIM consists of two phases as follows:

1.Parameter Estimation. This phase computes a lower-bound of the maximum expected spread among all size-k node sets, and then uses the lower-bound to derive a parameter θ.

2.Node Selection. This phase samples θ random RR sets from G, and then derives a size-k node set Sk that covers a large number of RR sets. After that, it returns Sk as the final result.

Node Selection

Algorithm 1 NodeSelection (G, k, θ)

1: Initialize a set R = ∅.

2: Generate θ random RR sets and insert them into R.

3: Initialize a node set Sk = ∅.

4: for j = 1 to k do

5:     Identify the node vj that covers the most RR sets in R.

6:     Add vj into Sk.

7:     Remove from R all RR sets that are covered by vj.

8: return Sk.

The generation of each RR set is implemented as a randomized bread-first search(BFS) on G.

Performance Bounds.

w(R) = ∑v∈R (the indegree of v in G)

Observe that if an edge is examined in the generation of R, then it must point to a node in R. Let EPT be the expected width of a random RR set. It can be verified that Algorithm 1 runs in O(θ * EPT) times.

Lemma 2. Let S be a fixed set of nodes, and v be a fixed node. Suppose that we generate an RR set R for v on a graph g that is constructed from G by removing each edge e with 1 - p(e) probability. Let ρ1 be the probability that S overlaps with R,and ρ2 be the probability that S, when used as a seed set, can activate v in an influence propagation process on G. Then,ρ1 = ρ2.

R : the set of all RR sets.                  FR(S) : the fraction of RR sets in R covered by S.

Based on Lemma 2, we can prove that:   COROLLARY 1.E[n *  FR(S)] = E[Ⅰ(S)].

Let OPT be the maximum expected spread of any size-k node set in G.Based on Chernoff bounds,we have this conclusion: 

Lemma 3. Suppose that θ satisfies

      θ ≥ (8 + 2ε)n * (l * log n + log(n, k) + log 2)/(OPT * ε^2).          (2)

Then, for any set S of at most k nodes, the following inequality holds with at least 1 - n^(-l)/(n, k) probability:

    |n * FR(S) - E[Ⅰ(S)]| < ε/2 * OPT.

Based on Lemma 3,we prove that :

Theorem 1. Given a θ that satisfied (2), Algorithm 1 returns a (1 - 1/e - ε)-approximate solution with at least 1 - n^(-l) probability.

We define λ = (8 + 2ε)n * (l * log n + log(n, k) + log 2)/ε^2, and we rewrite (2) as 

        θ ≥ λ/OPT.                                                                                 (5)

Parameter Estimation

Algorithm 2 KptEstimation(G, k)

1: for i = 1 to logn - 1 do

2:       Let ci = (6 * l * logn + 6 * log(logn)) * 2^i.

3:       Let sum = 0.

4:       for j = 1 to ci do

5:              Generate a random RR set R.

6:               k(R) = 1 - (1 - w(R)/m)^k.

7:               sum = sum + k(R).

8:        if sum/ci > 1/2^i then

9:                return KPT* = n * sum/(2 * ci)

10: return KPT* = 1

Our objective is to identify an θ that makes θ * EPT reasonably small, while still ensuring θ ≥ λ/OPT.We first define a probability distribution V* over the nodes in G,such that the probability mass for each node is proportional to its in-degress in G.We hava the following lemma:

Lemma 4. n/m * EPT = E[Ⅰ({v*})]

In other words,if we randomly sample a node from V* and calculate its expected spread s, then on average we have s = n/m * EPT. This implies that n/m * EPT ≤ OPT.

Suppose that we are able to identify a number t such that t = Ω(n/m * EPT) and t ≤ OPT. Then,by setting θ = λ/t, we can guarantee that Algorithm 1 is correct and has an expected time complexity of Ο(θ * EPT) = O(m/n * λ) = Ο((k + l)(m + n)logn/ε^2).             (6)

Choice of t.

if t = n/m * EPT , then θ may be too large,whitch in turn leads to inferior efficiency.

Suppose that we take k samples from V*, and use them to form a node set S*. (Note that S* may contain fewer than k nodes due to the elimination of duplicate samples.) Let KPT  be the mean of the expected spread of S*.It can be verified that 

          n/m * EPT ≤ KPT ≤ OPT,                                                     (7)

and that KPT increases with k. We also hava the following lemma:

Lemma 5.Let R be a random RR set and w(R) be the width of R. Define

           k(R) = 1 - (1 - w(R)/m)^k.                                                    (8)

Then, KPT = n * E[k(R)], where the expectation is taken over the random choices of R.

By Lemma 5, we can estimate KPT by first measuring n*k(R) on a set of random RR sets, and then taking the average of the measurements. By Chernoff bounds,if we are to obtain an estimate of KPT with δ ∈ (0, 1) relative error with at least 1 - 1/n^l probability, then the number of measurements should be Ω(l * n * logn /(δ^2 * KPT)). We resolve this dilemma with an adaptive sampling approach.

Estimation of KPT.

We first generate a relatively small number of RR sets, and use them to derive an estimation of KPT with a bounded absolute error. If th estimated value of KPT is much larger then the error bound, we infer that the estimation is accurate enough, and we terminate the algorithm. On the other hand, if the estimated value of KPT is not large compared with the error bound, then we generate more RR sets to obtain a new estimation of KPT with a reduced absolute error.


Theoretical Analysis.

Based on Chernoff bounds,we have the following result:

Theorem 2. When n ≥ 2 and l ≥ 1/2, Algorithm 2 returns KPT* ∈ [KPT/4, OPT] with at least 1 - 1/n^l probability, and runs in Ο(l * (m+n) * log n) expected time. Furthermore, E[1/KPT*] < 12/KPT.

In summary, our TIM algorithm works as follows.Given G, k, and two parameters ε and ι, TIM first feeds G and k as input to Algorithm 2, and obtains a number KPT* in return. After that, TIM computes θ = λ/KPT*, where λ is as defined in Equation 4 and is a function of k, ι, n, and ε. Finally, TIM gives G, k, and θ as input to Algorithm 1, whose output Sk* is the final result of influence maximization.

TIM runs in Ο((k + l)(m + n)logn/ε^2) expected time, and returns a (1 - 1/e - ε)-approximate solution with at least 1 - 2*n^(-l) probability.This success probability can easily increased to 1 - n^(-l), by scaling l up by a factor of 1 + log2/logn. Finally, we note that the time complexity of TIM is near-optimal under the IC model, as it is only a logn factor larger then the Ω(m+n) lower-bound proved by Borgs et al.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容