李理:从Image Caption Generation理解深度学习 (part IV)

转载自:CSDN极客头条
作者:李理 目前就职于环信,即时通讯云平台和全媒体智能客服平台,在环信从事智能客服和智能机器人相关工作,致力于用深度学习来提高智能机器人的性能。
相关文章:
李理:从Image Caption Generation理解深度学习(part I)
李理:从Image Caption Generation理解深度学习(part II)
李理:从Image Caption Generation理解深度学习(part III)
李理:从Image Caption Generation理解深度学习 (part IV)

前面我们讲过了反向传播算法的详细推导过程,大家可能会觉得有些复杂。事实上其实就是链式求导法则的应用。今天我们将会继续讨论这个问题,不过是从Computational Graphs的角度,也就是我们之前说过的自动求导(Automatic Differentiation or Reverse-mode Differentiation)。并且通过CS231n的Assignment2来学习使用这种方法,通过这种方法来实现一个多层的神经网络。
Calculus on Computational Graphs: Backpropagation
首先我们介绍一篇博客文章: https://colah.github.io/posts/2015-08-Backprop/ 基本是翻译过来,不过部分地方是我自己的理解,建议读者结合这篇文章一起阅读。
简介
反向传播算法是神经网络的核心算法,不过这个算法在不同的领域被多次”发现“过,因此有不同的名称。
计算图(Computational Graphs)
考虑一个简单的函数 e=(a+b)∗(b+1)e=(a+b)∗(b+1) 。这个函数有两个操作(函数),加法和乘法。为了指代方便,我们引入两个中间变量,c和d。
c=a+b
d=b+1
e=c∗d

下面我们把它画成一个计算图,每一个操作是图中一个节点,最基本的变量a和b也是一个节点。每个节点和它的输入变量直接有一条边。比如d的输入变量是b,那么d和b直接就有一条边。
任何一个显示定义的函数(隐函数不行,不过我们定义的神经网络肯定不会通过隐函数来定义)都可以分解为一个有向无环图(树),其中叶子节点是最基本的无依赖的自变量,而中间节点是我们引入的中间变量,而树根就是我们的函数。比如上面的例子,计算图如下所示:


图片描述

给定每一个自变量的值,我们可以计算最终的函数值,对应与神经网络就是feedforward计算。具体用”算法“怎么计算呢?首先因为计算图是一个有向无环图,因此我们可以拓扑排序,先是叶子节点a和b,他们的值已经给定,然后删除a和b出发的边,然后c和d没有任何未知依赖,可以计算,最后计算e。计算过程如下图:


图片描述

计算图的导数计算
首先我们可以计算每条边上的导数,也就是边的终点对起点的导数,而且导数是在起点的取前向计算值时的导数,具体过程如图所示:
图片描述

有些边的导数不依赖于输入的值,比如:


图片描述

但是还有很多边的导数是依赖于输入值的,比如:
图片描述

因为在“前向”计算的过程中,每个节点的值都计算出来了,所以边的计算很简单,也不需要按照什么的顺序。
不过我们一般比较感兴趣的是最终函数对某个自变量的导数,比如
图片描述

根据链式法则,只要找到这两个节点的所有路径,然后把路径的边乘起来就得到这条边的值,然后把所有边加起来就可以了。
比如上面的例子b到e有两条路径:b->c->e和b->d->e,所以
图片描述

如果用“链式”法则来写就是
图片描述

路径反过来而已。
使用上面的方法,我们可以计算任何一个点(上面的变量)对另外一个点(上面的变量)的导数。不过我们一般的情况是计算树根对所有叶子的导数,当然我们可以使用上面的算法一个一个计算,但是这样会有很多重复的计算。
比如a->e的路径是 a->c->e,b->e有一条边是b->c->e,其中c->e是重复的【这个例子不太好,我们可以想像c->e是一条很长的路径】,每次都重复计算c->e这个“子”路径是多余的。我们可以从后往前计算,也就是每个节点都是存放树根变量(这个例子是e)对当前节点的导数(其实也就是树根到当前节点的所有路径的和)。
反向导数计算


图片描述

计算流程文字描述如下: 首先还是对这个图进行拓扑排序,不过是反过来。 首先是
图片描述

这个没什么好说的。 然后计算
图片描述

然后计算
图片描述

然后计算
图片描述

计算
图片描述

前向导数计算
如果我们需要计算每一个变量对某一个变量的导数,就可以使用前向计算的方法。不过我们的神经网络都是相反——计算某个一个变量(一般是损失函数)对所有变量的导数,所以这里就不详细介绍了。
至此,本系列文章的第四部分告一段落。在接下来的文章中,作者将为大家详细讲述关于Optimization、常见的深度学习框架/工具的使用方法、使用自动求导来实现多层神经网络等内容,敬请期待。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容