Python学习的第三天

三国演义Top10 人物词云绘制

import jieba
from wordcloud import WordCloud
import imageio
# 1.读取小说内容
with open('./novel/threekingdom.txt','r',encoding='utf-8') as f:
    words = f.read()
    counts = {} # {'曹操':234,'回家':56}
    excludes = {"将军", "却说", "丞相", "二人", "不可", "荆州", "不能", "如此", "商议",
                "如何", "主公", "军士", "军马", "左右", "次日", "引兵", "大喜", "天下",
                "东吴", "于是", "今日", "不敢", "魏兵", "陛下", "都督", "人马", "不知",
                "孔明曰","玄德曰","刘备","云长"}
    # 2.分词
    words_list = jieba.lcut(words)
    print(words_list)
    for word in words_list:
        if len(word) <= 1:
            continue
        else:
            # 更新字典中的值
            # counts[word] = 取出字典中原来键对应的值 + 1
            # counts[word] = counts[word] + 1 # counts[word]如果没有就要报错
            # 字典.get(k) 如果字典中没有这个词 返回none
            counts[word] = counts.get(word, 0) + 1
    print(counts)
    # 3.词语过滤,删除无关词,重复词
    counts['孔明'] = counts['孔明'] + counts['孔明曰']
    counts['玄德'] = counts['玄德'] + counts['玄德曰'] + counts['刘备']
    counts['关公'] = counts['关公'] + counts['云长']
    for word in excludes:
        del counts[word]
    # 4.排序 [(),()]
    # 字典转换为列表
    items = list(counts.items())
    print(items)
    def sort_by_counts(x):
        return x[1]
    items.sort(key=lambda x:x[1], reverse=True)
    print(items)
    li = [] # ['孔明','孔明','孔明',.....,'曹操',.......]
    for i in range(10):
        # 序列解包
        role, count = items[i]
        print(role, count)
        # _告诉看代码的人,循环里面不需要使用临时变量
        for _ in range(count):
            li.append(role)

    # 5.得出结论
    text = ' '.join(li)
    mask = imageio.imread('./image/china.jpg')
    WordCloud(
        font_path='msyh.ttc',
        background_color='white',
        width=800,
        height=600,
        mask=mask,
        # 相邻两个重复值之间的匹配
        collocations=False
    ).generate(text).to_file('TOP10.png')
词云截图

红楼梦 Top10 人物词云绘制

import jieba
from wordcloud import WordCloud
import imageio
# 读取红楼梦小说
with open('./novel/all.txt', 'r', encoding='utf-8') as f:
    words = f.read()
    counts = {}
    excludes = {"什么", "一个", "我们", "你们", "如今", "说道", "知道", "起来", "这里",
                "出来", "众人", "那里", "自己", "一面", "只见", "太太", "两个", "没有",
                "怎么", "不是", "不知", "这个", "听见", "这样", "进来", "咱们", "就是",
                "老太太", "东西", "告诉", "回来", "只是", "大家", "姑娘", "奶奶", "凤姐儿", "王夫人", "太太"}
    # 2.分词
    words_list = jieba.lcut(words)
    print(words_list)
    for word in words_list:
        if len(word) <= 1:
            continue
        else:
            # 更新字典中的值
            # counts[word] = 取出字典中原来键对应的值 + 1
            # counts[word] = counts[word] + 1 # counts[word]如果没有就要报错
            # 字典.get(k) 如果字典中没有这个词 返回none
            counts[word] = counts.get(word, 0) + 1
    print(counts)
    # 3.词语过滤,删除无关词,重复词
    counts['贾母'] = counts['贾母'] + counts['老太太']
    counts['黛玉'] = counts['黛玉'] + counts['林黛玉']
    counts['宝玉'] = counts['宝玉'] + counts['贾宝玉']
    counts['宝钗'] = counts['宝钗'] + counts['薛宝钗']
    counts['贾政'] = counts['老爷'] + counts['贾政']
    counts['王熙凤'] = counts['凤姐儿'] + counts['凤姐'] + counts['王熙凤']
    for word in excludes:
        del counts[word]
    # 4.排序 [(),()]
    # 字典转换为列表
    items = list(counts.items())
    print(items)
    items.sort(key=lambda x:x[1], reverse=True)
    print(items)
    li = []
    for i in range(10):
        # 序列解包
        role, count = items[i]
        print(role, count)
        # _告诉看代码的人,循环里面不需要使用临时变量
        for _ in range(count):
            li.append(role)

    # 5.得出结论
    text = ' '.join(li)
    mask = imageio.imread('./image/china.jpg')
    WordCloud(
        font_path='msyh.ttc',
        background_color='white',
        width=800,
        height=600,
        mask=mask,
        # 相邻两个重复值之间的匹配
        collocations=False
    ).generate(text).to_file('TOP10.png')
词云截图

匿名函数

  • 结构: lambda x1, x2, x3, ....., xn: 表达式
sum_num = lambda  x1, x2: x1+x2
print(sum_num(2, 3))
# 参数可以是无限多个,但是表达式只有一个
  • 实例
name_info_list = [
    ("张三",5465),
    ("李四",6545),
    ("王五",5674),
    ("赵六",9676),
]
name_info_list.sort(key=lambda x:x[1], reverse=True)
print(name_info_list)

str_info = [
    {"name":"zhangsan","age":18},
    {"name":"lisi","age":32},
    {"name":"wangwu","age":2},
    {"name":"zhaoliu","age":45},
            ]
str_info.sort(key=lambda x:x['age'], reverse=True)
print(str_info)

列表推导式: 列表解析与字典解析

  • 普通for循环创建列表
li = []
for i in range(10):
    li.append(i)
print(li)
  • 列表推导式创建列表
# [表达式 for 临时变量 in 可迭代对象 可以增加条件]
print([i for i in range(10)])
  • 列表解析—筛选出列表中所有的偶数
# 普通方法
li = []
for i in range(10):
    if i%2 == 0:
        li.append(i)
print(li)

# 使用列表解析
print([i for i in range(10) if i%2 == 0])
  • 随机生成,筛选出列表中大于0的数
from random import randint
num_list = [randint(-10, 10) for _ in range(10)]
print(num_list)
print([i for i in num_list if i > 0])
  • 字典解析
# 生成100个学生的成绩
str_grades = {'student{}'.format(i):randint(50,100) for i in range(1,101)}
print(str_grades)

# 筛选大于60分的所有学生
print({k : v for k, v in str_grades.items() if v > 60})

matplotlib

  • 导入
from matplotlib import pyplot as plt
import numpy as np
  • 解决中文乱码
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
  • 使用100个点 绘制{0 , 2pi}正弦、余弦曲线图
# .linspace 左闭右闭区间的等差数列
x = np.linspace(0,2*np.pi, num = 100)
print(x)
y = np.sin(x)
plt.plot(x, y, color='g', linestyle='--',label='sinx')

# 正弦和余弦在同一坐标系下
cosy = np.cos(x)
plt.plot(x, cosy, color='r',label='cosx')
plt.xlabel('时间(s)')
plt.ylabel('电压(v)')
plt.title('欢迎来到Python世界')
# 图例
plt.legend()
plt.show()
正弦、余弦曲线图
  • 柱状图
import string
from random import randint
# print(string.ascii_uppercase[0:6])
# ['A','B','C',.....]
x = ['口红{}'.format(x) for x in string.ascii_uppercase[0:5]]
y = [randint(200, 500) for _ in range(5)]
print(x)
print(y)
plt.xlabel("口红价格")
plt.ylabel('价格(元)')
plt.bar(x, y)
plt.show()
柱状图
  • 饼图
from random import randint
counts = [randint(3500, 9000) for _ in range(6)]
labels = ['员工{}'.format(x) for x in string.ascii_uppercase[0:6]]
# 距离圆心点距离
explode = [0.1,0,0,0,0,0]
colors = ['red','purple','blue','yellow','gray','green']
plt.pie(counts, explode=explode, labels = labels, shadow=True, autopct='%1.1f%%', colors=colors)
plt.legend(loc = 2)
# plt.axis('equal')
plt.show()
饼图
  • 散点图
# 均值为0 标准差为1 的正太分布数据
x = np.random.normal(0, 1, 100000)
y = np.random.normal(0, 1, 100000)
# alpha透明度
plt.scatter(x, y, alpha=0.1)
plt.show()
散点图

绘制三国Top10人物饼图

import jieba
from wordcloud import WordCloud
with open('./novel/threekingdom.txt','r',encoding='utf-8') as f:
    words = f.read()
    counts = {} # {'曹操':234,'回家':56}
    excludes = {"将军", "却说", "丞相", "二人", "不可", "荆州", "不能", "如此", "商议",
                "如何", "主公", "军士", "军马", "左右", "次日", "引兵", "大喜", "天下",
                "东吴", "于是", "今日", "不敢", "魏兵", "陛下", "都督", "人马", "不知",
                "孔明曰","玄德曰","刘备","云长"}
    # 2.分词
    words_list = jieba.lcut(words)
    print(words_list)
    for word in words_list:
        if len(word) <= 1:
            continue
        else:
            # 更新字典中的值
            # counts[word] = 取出字典中原来键对应的值 + 1
            # counts[word] = counts[word] + 1 # counts[word]如果没有就要报错
            # 字典.get(k) 如果字典中没有这个词 返回none
            counts[word] = counts.get(word, 0) + 1
    # 3.词语过滤,删除无关词,重复词
    counts['孔明'] = counts['孔明'] + counts['孔明曰']
    counts['玄德'] = counts['玄德'] + counts['玄德曰'] + counts['刘备']
    counts['关公'] = counts['关公'] + counts['云长']
    for word in excludes:
        del counts[word]
    # 4.排序 [(),()]
    # 字典转换为列表
    items = list(counts.items())
    items.sort(key=lambda x: x[1], reverse=True)
    names = []
    number = []
    for i in range(10):
        # 序列解包
        role, count = items[i]
        names.append(role)
        number.append(count)
    # 5.得出结论
# 距离圆心点距离
explode = [0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
plt.pie(number, explode=explode, labels=names, shadow=True, autopct='%1.1f%%')
plt.axis('equal')
plt.legend(loc=2)
plt.show()
三国Top10人物饼图
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容

  • 一、绘制词云 导入包 读取小说内容 分词 词语过滤,删除无关词,重复词 排序 序列解包 结论 二、匿名函数 匿名函...
    喵青禾阅读 328评论 0 0
  • 1. 词云WordCloud——续 ①Python中使用open内置函数进行文件读取②利用函数jieba.lcut...
    婉儿吖阅读 379评论 0 0
  • 1.三国演义Top10人物分析 效果图 2.匿名函数(lambda) lambda x1, x2, ...xn: ...
    神坑少女7阅读 160评论 0 0
  • 三国TOP10人物分析 运行结果: 匿名函数 ①结构:lambda x1,x2...xn:表达式 注:参数可以是无...
    Amieee阅读 337评论 0 0
  • 昨天对三国演义进行了分词和绘制云词,今天从昨天的基础上,来对三国出现频率最高的10个人进行分词,绘制三国人物TOP...
    佑印无心阅读 222评论 0 1