微服务架构:最终一致性 + 事务补偿

分布式事务产生的原因

  • 数据库分库分表
  • 微服务化
  • 在微服务架构中,每个服务在用本地事务的时候,知道自己执行的事务是成功还是失败,但是无法知道其他服务节点的事务执行情况,因此需要引入协调者TM,负责协调参与者RM的行为,并最终决定这些参与者是否把事务进行提交。

随着微服务架构的流行,让分布式事务问题日益突出, 那么常见的分布式事务解决方案有哪些呢? 如何理解最终一致性和它的事务补偿机制呢?

刚性事务 - 强一致性

image.png

如上图,这是个标准的全局事务,事务管理器控制着全局事务,管理事务的生命周期,并通过XA协议与资源管理器协调资源;资源管理器负责控制和管理实际的资源 (这里的资源管理器,可以是一个DBMS,或者消息服务管理系统)

两阶段提交

它是XA用于在全局事务中协调多个资源的机制,常用于事务管理器资源管理器之间,解决一致性问题,分两阶段:

  • 提交事务请求
  • 执行事务请求
image.png

2PC的问题

  • 效率低,与本地事务相比,XA协议的系统开销比较大(数据被锁定的时间跨度整个事务,直到全局事务的结束),只有支持XA协议的资源才能参与分布式事务。
  • 2PC是反可伸缩模式的,在事务处理过程中,参与者需要一直持有资源直到整个事务的结束,这样当业务规模越来越大的情况下,它的局限性就越明显。
  • 数据不一致,在2pc中的第二阶段时,当TM向RM发送提交请求之后,发生局部的网络异常或者在发送提交请求过程中TM发生故障, 这会导致只有一部分RM收到了提交请求,然后没有收到提交请求的RM不会执行事务的提交,于是整个分布式系统便会出现数据不一致。
  • 单点故障, 由于TM的重要性,一旦发生故障,整个事务失效

3PC的改进

增加了超时机制, 主要解决单点故障问题,并减少资源锁定时间,一旦RM无法及时收到来至TM的信息之后,它会默认执行Commit操作, 而不会一直持有事务资源并处于阻塞状态。但是这种机制同样会导致数据不一致的问题,由于网络的原因,TM发送的回滚动作,没有被RM及时的收到,那么RM等待超时后就执行了提交操作,这样就和收到回滚操作并执行的RM之间存在了数据不一致的情况。

柔性事务 - 最终一致性

在2008年,eBay公布了基于BASE准则的最终一致性解决方案,它主要采用了消息队列来辅助实现事务控制流程,其核心通过消息队列的方式来异步执行分布式处理的任务,如果事务失败,则可以发起人工重试的纠正流程(比如对账系统,对处于dead letter queue的问题进行处理)

消息发送一致性

微服务架构下,需要通过网络进行通信,就自然引入了数据传输的不确定性,也就是CAP原理中的P-分区容错,而这里的消息发送一致性是可靠消息的保证。

生成消息的业务动作与消息发送的一致(e.g: 如果业务操作成功,那么由这个业务操作所产生的消息一定会成功投递出去,否则就丢失消息)

最终一致性.png

如上图,保证消息发送一致性的一般流程如下:

  • Producer先把消息发送给消息中间件服务,消息的状态标记为待确认,这个状态并不会被Consumer消费,对于长期待确认的消息,消息中间件会调用Producer的查询接口,查看最新状态,根据结果决定是否删除消息。
  • Producer执行完业务操作后,向消息中间件服务,发送确认消息
  • 这时消息的状态会被更改为待发送(可发送)
  • Consumer监听并接收待发送状态的消息,执行业务处理
  • Consumer业务处理后,向消息中间件服务发送ACK,确认消息已经收到(消息中间件服务将从队列中删除该消息)

消息的ACK确认流程中,任何一个环节都可能会出问题!

未ACK的消息,采用按规则重新投递的方式进行处理(很多MQ都提供at least once的投递,持久化和重试机制),一般还会设置重发的次数, 超过次数的消息会进入dead letter queue,等待人工干预或者延后定时处理。

业务接口的幂等性

消息的重复发送会导致业务接口出现重复调用的问题,主要原因就是消息没有及时收到ACK确认导致的, 那如何实现幂等性设计呢?

在实际的业务场景中, 业务接口的幂等性设计,常结合查询操作一起使用,

比如根据唯一标识查询消息是否被处理过, 或者根据消费日志表,来维护消息消费的记录。

保证最终一致性的模式

  • 可查询模式,任何一个服务操作都提供一个可查询接口,用来向外部输出操作执行的状态,下游Consumer可以通过接口得知服务操作执行的状态,然后根据不同的状态做不同的处理操作(执行或者取消), 该模式对业务接口有一定侵入性。
  • 补偿模式, 有了查询模式,我们能够知道操作的具体状态,如果处于不正常状态,我们可以修正操作中出现的问题,或许是重新执行,或许取消已经完成的操作,通过修复是的整个分布式系统达到最终一致。
  • 最大努力通知模式, 在调用支付宝交易接口或微信支付接口时,一般会在回调页面和接口里,解密参数,然后调用系统中更新交易状态相关的服务,将订单更新为付款成功。同时,只有当回调页面中输出了success字样或者标识业务处理成功相应状态码时,支付宝才会停止回调请求。否则,支付宝会每间隔一段时间后,再向客户方发起回调请求,直到输出成功标识为止。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342