2019-05-07支持向量机:解释+Python实现

支持向量机的闪光点

把低维度的数据,按照一定的方式,转化为高纬度数据
转换的方式,可以定制,定制的目的,就是实现可分。
具体可以参考讲的比较透彻的网页
https://blog.csdn.net/macyang/article/details/38782399
摘录:

特征空间的隐式映射:核函数
咱们首先给出核函数的来头:
在上文中,我们已经了解到了SVM处理线性可分的情况,而对于非线性的情况,SVM 的处理方法是选择一个核函数 ,通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。由于核函数的优良品质,这样的非线性扩展在计算量上并没有比原来复杂多少,这一点是非常难得的。当然,这要归功于核方法——除了 SVM 之外,任何将计算表示为数据点的内积的方法,都可以使用核方法进行非线性扩展。
也就是说,Minsky和Papert早就在20世纪60年代就已经明确指出线性学习器计算能力有限。为什么呢?因为总体上来讲,现实世界复杂的应用需要有比线性函数更富有表达能力的假设空间,也就是说,目标概念通常不能由给定属性的简单线性函数组合产生,而是应该一般地寻找待研究数据的更为一般化的抽象特征。

***特征映射***:此图比较形象

***The SVM algorithm***
image.png

python实现SVM

https://blog.csdn.net/u010665216/article/details/78382984

SVM算法小结

SVM算法是一个很优秀的算法,在集成学习和神经网络之类的算法没有表现出优越性能之前,SVM算法基本占据了分类模型的统治地位。目前在大数据时代的大样本背景下,SVM由于其在大样本时超级大的计算量,热度有所下降,但仍然是一个常用的机器学习算法。

SVM算法的主要优点有:

  1. 解决高维特征的分类问题和回归问题很有效,在特征维度大于样本数时依然有很好的效果。

  2. 仅仅使用一部分支持向量来做超平面的决策,无需依赖全部数据。

  3. 有大量的核函数可以使用,从而可以很灵活的来解决各种非线性的分类回归问题。

  4. 样本量不是海量数据的时候,分类准确率高,泛化能力强。

SVM算法的主要缺点有:

  1. 如果特征维度远远大于样本数,则SVM表现一般。

  2. SVM在样本量非常大,核函数映射维度非常高时,计算量过大,不太适合使用。

  3. 非线性问题的核函数的选择没有通用标准,难以选择一个合适的核函数。

  4. SVM对缺失数据敏感。

参考:http://www.cnblogs.com/pinard/p/6113120.html

补充

线性支持向量机

<u>http://www.cnblogs.com/pinard/p/6097604.html</u>

线性不可分支持向量机:

<u>https://www.cnblogs.com/pinard/p/6103615.html</u>

点的SVM分类实例:

<u>https://blog.csdn.net/zoinsung_lee/article/details/78429607</u>

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容