Kafka架构与实战

Kafka架构与实战

概念和基本架构

Kafka介绍

Kafka是最初由Linkedin公司开发,是一个分布式、分区的、多副本的、多生产者、多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx日志、访问日志,消息服务等等,Linkedin于2010年贡献给了Apache基金会并成为顶级开源项目。

主要应用场景是:日志收集系统和消息系统。

Kafka主要设计目标如下:

  • 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能。
  • 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒10万条消息的传输。
  • 支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输。
  • 同时支持离线数据处理和实时数据处理。
  • 支持在线水平扩展


    Kafka介绍.png

有两种主要的消息传递模式:点对点传递模式、发布-订阅模式。大部分的消息系统选用发布-订阅模式。Kafka就是一种发布-订阅模式

对于消息中间件,消息分推拉两种模式。Kafka只有消息的拉取,没有推送,可以通过轮询实现消息的推送

  1. Kafka在一个或多个可以跨越多个数据中心的服务器上作为集群运行。

  2. Kafka集群中按照主题分类管理,一个主题可以有多个分区,一个分区可以有多个副本分区。

  3. 每个记录由一个键,一个值和一个时间戳组成。

Kafka具有四个核心API:

  1. Producer API:允许应用程序将记录流发布到一个或多个Kafka主题。
  2. Consumer API:允许应用程序订阅一个或多个主题并处理为其生成的记录流。
  3. Streams API:允许应用程序充当流处理器,使用一个或多个主题的输入流,并生成一个或多个输出主题的输出流,从而有效地将输入流转换为输出流。
  4. Connector API:允许构建和运行将Kafka主题连接到现有应用程序或数据系统的可重用生产者或使用者。例如,关系数据库的连接器可能会捕获对表的所有更改。

Kafka优势

  1. 高吞吐量:单机每秒处理几十上百万的消息量。即使存储了许多TB的消息,它也保持稳定的性能。
  2. 高性能:单节点支持上千个客户端,并保证零停机和零数据丢失。
  3. 持久化数据存储:将消息持久化到磁盘。通过将数据持久化到硬盘以及replication防止数据丢失。
    • 零拷贝
    • 顺序读,顺序写
    • 利用Linux的页缓存
  4. 分布式系统,易于向外扩展。所有的Producer、Broker和Consumer都会有多个,均为分布式的。无需停机即可扩展机器。多个Producer、Consumer可能是不同的应用。
  5. 可靠性 - Kafka是分布式,分区,复制和容错的。
  6. 客户端状态维护:消息被处理的状态是在Consumer端维护,而不是由server端维护。当失败时能自动平衡。
  7. 支持online(在线)和offline(离线)的场景。
  8. 支持多种客户端语言。Kafka支持Java、.NET、PHP、Python等多种语言。

Kafka应用场景

日志收集

一个公司可以用Kafka可以收集各种服务的Log,通过Kafka以统一接口服务的方式开放给各种Consumer

消息系统

解耦生产者和消费者、缓存消息等;

用户活动跟踪

Kafka经常被用来记录Web用户或者App用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到Kafka的Topic中,然后消费者通过订阅这些Topic来做实时的监控分析,亦可保存到数据库;

运营指标

Kafka也经常用来记录运营监控数据。包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告;

流式处理

比如Spark Streaming和Storm。

基本架构

消息和批次

Kafka的数据单元称为消息。可以把消息看成是数据库里的一个“数据行”或一条“记录”。消息由字节 数组组成。

消息有键,键也是一个字节数组。当消息以一种可控的方式写入不同的分区时,会用到键。

为了提高效率,消息被分批写入Kafka。批次就是一组消息,这些消息属于同一个主题和分区。

把消息分成批次可以减少网络开销。批次越大,单位时间内处理的消息就越多,单个消息的传输时 间就越长。批次数据会被压缩,这样可以提升数据的传输和存储能力,但是需要更多的计算处理。

模式

消息模式(schema)有许多可用的选项,以便于理解。如JSON和XML,但是它们缺乏强类型处理 能力。Kafka的许多开发者喜欢使用Apache Avro。Avro提供了一种紧凑的序列化格式,模式和消息体分开。当模式发生变化时,不需要重新生成代码,它还支持强类型和模式进化,其版本既向前兼容,也向后兼容。

数据格式的一致性对Kafka很重要,因为它消除了消息读写操作之间的耦合性。

主题和分区

Kafka的消息通过主题进行分类。主题可比是数据库的表或者文件系统里的文件夹。主题可以被分为若干分区,一个主题通过分区分布于Kafka集群中,提供了横向扩展的能力。


主题和分区.png
生产者和消费者

生产者创建消息。消费者消费消息。 一个消息被发布到一个特定的主题上。 生产者在默认情况下把消息均衡地分布到主题的所有分区上:

  1. 直接指定消息的分区
  2. 根据消息的key散列取模得出分区
  3. 轮询指定分区。

消费者通过偏移量来区分已经读过的消息,从而消费消息。 消费者是消费组的一部分。消费组保证每个分区只能被一个消费者使用,避免重复消费。


生产者和消费者.png
broker和集群

一个独立的Kafka服务器称为broker。broker接收来自生产者的消息,为消息设置偏移量,并提交 消息到磁盘保存。broker为消费者提供服务,对读取分区的请求做出响应,返回已经提交到磁盘上的消 息。单个broker可以轻松处理数千个分区以及每秒百万级的消息量。

broker和集群.png

每个集群都有一个broker是集群控制器(自动从集群的活跃成员中选举出来)。

控制器负责管理工作:

  • 将分区分配给broker
  • 监控broker

集群中一个分区属于一个broker,该broker称为分区首领一个分区可以分配给多个broker,此时会发生分区复制。 分区的复制提供了消息冗余,高可用副本分区不负责处理消息的读写。

核心概念

Producer

生产者创建消息。 该角色将消息发布到Kafka的topic中。broker接收到生产者发送的消息后,broker将该消息追加到当前用于追加数据的 segment 文件中。 一般情况下,一个消息会被发布到一个特定的主题上。

  1. 默认情况下通过轮询把消息均衡地分布到主题的所有分区上。
  2. 在某些情况下,生产者会把消息直接写到指定的分区。这通常是通过消息键和分区器来实现的,分区器为键生成一个散列值,并将其映射到指定的分区上。这样可以保证包含同一个键的消息会被写到同一个分区上。
  3. 生产者也可以使用自定义的分区器,根据不同的业务规则将消息映射到分区
Consumer

消费者读取消息。

  1. 消费者订阅一个或多个主题,并按照消息生成的顺序读取它们。
  2. 消费者通过检查消息的偏移量来区分已经读取过的消息。偏移量是另一种元数据,它是一个不断递增的整数值,在创建消息时,Kafka 会把它添加到消息里。在给定的分区里,每个消息的偏移量都是唯一的。消费者把每个分区最后读取的消息偏移量保存在Zookeeper或Kafka 上,如果消费者关闭或重启,它的读取状态不会丢失。
  3. 消费者是消费组的一部分。群组保证每个分区只能被一个消费者使用。
  4. 如果一个消费者失效,消费组里的其他消费者可以接管失效消费者的工作,再平衡,分区重新分配。


    Consumer.png
Broker

一个独立的Kafka 服务器被称为broker。
broker 为消费者提供服务,对读取分区的请求作出响应,返回已经提交到磁盘上的消息。

  1. 如果某topic有N个partition,集群有N个broker,那么每个broker存储该topic的一个 partition。
  2. 如果某topic有N个partition,集群有(N+M)个broker,那么其中有N个broker存储该topic的 一个partition,剩下的M个broker不存储该topic的partition数据。
  3. 如果某topic有N个partition,集群中broker数目少于N个,那么一个broker存储该topic的一 个或多个partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。

broker 是集群的组成部分。每个集群都有一个broker 同时充当了集群控制器的角色(自动从集群 的活跃成员中选举出来)。

控制器负责管理工作,包括将分区分配给broker 和监控broker。 在集群中,一个分区从属于一个broker,该broker 被称为分区的首领。


Broker.png
Topic

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。 物理上不同Topic的消息分开存储。 主题就好比数据库的表,尤其是分库分表之后的逻辑表。

Partition
  1. 主题可以被分为若干个分区,一个分区就是一个提交日志。
  2. 消息以追加的方式写入分区,然后以先入先出的顺序读取。
  3. 无法在整个主题范围内保证消息的顺序,但可以保证消息在单个分区内的顺序。
  4. Kafka 通过分区来实现数据冗余和伸缩性。
  5. 在需要严格保证消息的消费顺序的场景下,需要将partition数目设为1。


    Partition.png
Replicas 副本

Kafka 使用主题来组织数据,每个主题被分为若干个分区,每个分区有多个副本。那些副本被保存 在broker 上,每个broker 可以保存成百上千个属于不同主题和分区的副本。

副本有以下两种类型:

  • 首领副本

    每个分区都有一个首领副本。为了保证一致性,所有生产者请求和消费者请求都会经过这个副本。

  • 跟随者副本

    首领以外的副本都是跟随者副本。跟随者副本不处理来自客户端的请求,它们唯一的任务就是从首 领那里复制消息,保持与首领一致的状态。如果首领发生崩溃,其中的一个跟随者会被提升为新首领。

Offset
  • 生产者Offset

    消息写入的时候,每一个分区都有一个offset,这个offset就是生产者的offset,同时也是这个分区的最新最大的offset。有些时候没有指定某一个分区的offset,这个工作kafka帮我们完成。


    生产者Offset.png
  • 消费者Offset


    消费者Offset.png

这是某一个分区的offset情况,生产者写入的offset是最新最大的值是12,而当Consumer A进行消 费时,从0开始消费,一直消费到了9,消费者的offset就记录在9,Consumer B就纪录在了11。等下一 次他们再来消费时,他们可以选择接着上一次的位置消费,当然也可以选择从头消费,或者跳到最近的 记录并从“现在”开始消费。

副本

Kafka通过副本保证高可用。副本分为首领副本(Leader)和跟随者副本(Follower)。跟随者副本包括同步副本和不同步副本,在发生首领副本切换的时候,只有同步副本可以切换为首领副本。

AR:

分区中的所有副本统称为AR(Assigned Repllicas)。AR=ISR+OSR

ISR:

所有与leader副本保持一定程度同步的副本(包括Leader)组成ISR(In-Sync Replicas),ISR集合是AR集合中的一个子集。消息会先发送到leader副本,然后follower副本才能从leader副本中拉取消息进行同步,同步期间内follower副本相对于leader副本而言会有一定程度的滞后。前面所说的“一定程 度”是指可以忍受的滞后范围,这个范围可以通过参数进行配置。

OSR

与leader副本同步滞后过多的副本(不包括leader)副本,组成OSR(Out-Sync Relipcas)。在正常情况下,所有的follower副本都应该与leader副本保持一定程度的同步,即AR=ISR,OSR集合为空。

HW

HW是High Watermak的缩写, 俗称高水位,它表示了一个特定消息的偏移量(offset),消费者只能拉取到这个offset之前的消息。

LEO

LEO是Log End Offset的缩写,它表示了当前日志文件中下一条待写入消息的offset。

副本.png

Kafka安装与配置

Java环境为前提

参考前面的Java安装

Zookeeper 的安装配置

单机版
tar -axvf zookeeper-3.4.14.tar.gz -C ../module/
cd ../module/conf
cp zoo_sample.cfg zoo.cfg
vim zoo.cfg

dataDir=/mnt/module/zookeeper-3.4.14/data

# 保存退出

编辑/etc/profile

## ZOOKEEPER_HOME
export ZOOKEEPER_PREFIX=/mnt/module/zookeeper-3.4.14
export PATH=$PATH:$ZOOKEEPER_PREFIX/bin
export ZOO_LOG_DIR=/mnt/module/zookeeper-3.4.14/log

刷新文件后启动zk

source /etc/profile
zkServer.sh start

Kafka的安装与配置

 tar -zxvf kafka_2.12-1.0.2.tgz -C ../module/
 vim/etc/profile
 
##KAFKA_HOME
export KAFKA_HOME=/mnt/module/kafka_2.12-1.0.2
export PATH=$PATH:$KAFKA_HOME/bin

###保存退出后刷新
source /etc/profile
vim  server.properties


log.dirs=/mnt/module/kafka_2.12-1.0.2/kafka-logs
zookeeper.connect=localhost:2181/myKafka


##保存后退出,创建创建文件夹
mkdir /mnt/module/kafka_2.12-1.0.2/kafka-logs

###启动Kafka
kafka-server-start.sh -daemon /mnt/module/kafka_2.12-1.0.2/config/server.properties

生产与消费

  1. Kafka-topic.sh 用于管理主体
##列出所有的主题
kafka-topics.sh --list --zookeeper localhost:2181/myKafka
##创建主题,该主题包含一个分区,该分区为Leader分区,它没有Follower分区副本。
kafka-topics.sh --zookeeper localhost:2181/myKafka --create --topic topic_1 --partitions 1 --replication-factor 1
##创建主题,该主题包含5个分区,该分区为Leader分区,它没有Follower分区副本。
kafka-topics.sh --zookeeper localhost:2181/myKafka --create --topic topic_1 --partitions 5 --replication-factor 1
## 查看主题详细信息
kafka-topics.sh --zookeeper localhost/myKafka --describe --topic topic_1
## 删除指定主题
kafka-topics.sh --zookeeper localhost:2181/myKafka --delete --topic topic_2
  1. kafka-console-producer.sh用于生产消息
## 开始生产者
kafka-console-producer.sh --broker-list localhost:9092 --topic topic_1
  1. kafka-console-consumer.sh用于消费消息
## 开启消费者
kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic topic_1
# 开启消费者方式二,从头消费,不按照偏移量消费
kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic topic_1 --from-beginning

Kafka开发实战

消息的发送与接收

消息的发送与接收.png
生产者

主要的对象有: KafkaProducer , ProducerRecord 。其中 KafkaProducer 是用于发送消息的类, ProducerRecord 类用于封装Kafka的消息。

KafkaProducer 的创建需要指定的参数和含义:

参数 说明
bootstrap.servers 配置生产者如何与broker建立连接。该参数设置的是初始化参数。如果生产者需要连接的是Kafka集群,则这里配置集群中几个broker的地址,而不是全部,当生产者连接上此处指定的broker之后,在通过该连接发现集群中的其他节点。
key.serializer 要发送信息的key数据的序列化类。设置的时候可以写类名,也可以使用该 类的Class对象。
value.serializer 要发送消息的alue数据的序列化类。设置的时候可以写类名,也可以使用 该类的Class对象。
acks 默认值:all。 <br />acks=0: 生产者不等待broker对消息的确认,只要将消息放到缓冲区,就认为消息 已经发送完成。 该情形不能保证broker是否真的收到了消息,retries配置也不会生效。发送的消息的返回的消息偏移量永远是-1。<br />acks=1: 表示消息只需要写到主分区即可,然后就响应客户端,而不等待副本分区 的确认。 在该情形下,如果主分区收到消息确认之后就宕机了,而副本分区还没来得及同步该消息,则该消息丢失。<br />acks=all: 首领分区会等待所有的ISR副本分区确认记录。 该处理保证了只要有一个ISR副本分区存活,消息就不会丢失。 这是Kafka最强的可靠性保证,等效于 acks=-1
retries retries重试次数,当消息发送出现错误的时候,系统会重发消息。 跟客户端收到错误时重发一样。 如果设置了重试,还想保证消息的有序性,需要设置 MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1 否则在重试此失败消息的时候,其他的消息可能发送成功了

其他参数可以从 org.apache.kafka.clients.producer.ProducerConfig 中找到。我们后面的 内容会介绍到。消费者生产消息后,需要broker端的确认,可以同步确认,也可以异步确认。 同步确认效率低,异步确认效率高,但是需要设置回调对象。

XML引用

<!-- Kafka 客户端,高版本兼容低版本,使用和broker一致的版本 -->
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>1.0.2</version>
</dependency>

Producer

package com.hhb.kafka.demo1;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.header.Header;
import org.apache.kafka.common.header.internals.RecordHeader;
import org.apache.kafka.common.serialization.IntegerSerializer;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * @description:
 * @author: huanghongbo
 * @date: 2020-08-12 11:34
 **/
public class MyProducer1 {

    public static void main(String[] args) {
        Map<String, Object> configs = new HashMap<>();
        //初始链接
        configs.put("bootstrap.servers", "59.110.241.53:9092");
        //key的序列化类
        configs.put("key.serializer", IntegerSerializer.class);
        //value的序列化类
        configs.put("value.serializer", StringSerializer.class);
        //创建一个生产者
        KafkaProducer<Integer, String> producer = new KafkaProducer<>(configs);

        //自定义用户消息头字段
        List<Header> list = new ArrayList<>();
        list.add(new RecordHeader("biz.name", "producer.demo".getBytes()));
        //组装 ProducerRecord
        ProducerRecord<Integer, String> producerRecord = new ProducerRecord<Integer, String>(
                "topic_1",
                0,
                0,
                "hello world!",
                list
        );
        //消息同步确认
//        Future<RecordMetadata> send = producer.send(producerRecord);
//        RecordMetadata recordMetadata = send.get();
//        System.err.println("输出分区信息:" + recordMetadata.partition());
//        System.err.println("输出主题信息:" + recordMetadata.topic());
//        System.err.println("输出偏移量信息:" + recordMetadata.offset());
        //消息异步确认
        producer.send(producerRecord, (RecordMetadata recordMetadata, Exception e) -> {
            if (e != null) {
                System.err.println("异常消息: " + e.getMessage());
                return;
            }
            System.err.println("输出分区信息:" + recordMetadata.partition());
            System.err.println("输出主题信息:" + recordMetadata.topic());
            System.err.println("输出偏移量信息:" + recordMetadata.offset());
        });
        //关闭生产者
        producer.close();
    }
}
消费者

消息消费:Kafka不支持消息推送,我们可以自己实现,Kafka采用的是消息的拉取(poll方法),消费者主要的对象有:KafkaConsumer用于消费消息的类。KafkaConsumer的创建需要制定的参数和含义:

参数 说明
bootstrap.servers 与Kafka建立初始链接的broker地址列表
Key.deserializer key的反序列化器
value.deserializer value的反序列化器
group.id 指定消费组id,用于标示该消费者所属的消费者组
auto.offset.reset 当kafka中没有初始偏移量或当前偏移量在服务器中不存在(如数据被删除了)该如何处理<br />earliest: 自动重置偏移量到最早的偏移量 <br />latest:自动重置偏移量为最新的偏移量<br />nono:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常<br />anything:向消费者抛异常

ConsumerConfig类中包含了所有的可以给KafkaConsumer配置的参数

Consumer

package com.hhb.kafka.demo1;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.IntegerDeserializer;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * @description:
 * @author: huanghongbo
 * @date: 2020-08-12 15:48
 **/
public class MyConsumer {

    private static final Logger logger = LoggerFactory.getLogger(MyConsumer.class);

    public static void main(String[] args) {
        Map<String, Object> config = new HashMap<>();
        //服务器地址
        config.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hhb:9092");
        //配置key的反序列化类
        config.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
        //配置value的反序列化类
        config.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
        //消费组
        config.put(ConsumerConfig.GROUP_ID_CONFIG, "consumer_demo");
        //如果找不到消费者有效的偏移量,则自动重置到开始,earliest表示最早的偏移量
        //latest表示直接重置到消息偏移的最后一个
        config.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
        KafkaConsumer<Integer, String> consumer = new KafkaConsumer<>(config);
        List<String> topics = new ArrayList<>();
        topics.add("topic_1");
        //先订阅,在消费
        consumer.subscribe(topics);
        //拉取记录
        while (true) {
            logger.info("======");
            //批量从主题拉取消息,如果拉取不到数据,等待3秒再去拉取数据,
            ConsumerRecords<Integer, String> consumerRecords = consumer.poll(3_000);
            //遍历本次从主题的分区拉取的批量消息
            consumerRecords.forEach((ConsumerRecord<Integer, String> consumerRecord) -> {
                System.err.println("分区:" + consumerRecord.partition() +
                        ",主题:" + consumerRecord.topic() +
                        ",提交偏移量:" + consumerRecord.offset() +
                        ",key :  " + consumerRecord.key() +
                        ",value: " + consumerRecord.value());
            });
        }
    }
}

SpringBoot Kafka

POM

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.1.7.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.hhb.kafka</groupId>
    <artifactId>kafka</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>kafka</name>
    <description>Demo project for Spring Boot</description>
    <properties>
        <java.version>1.8</java.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>

application.properties

spring.application.name=kafka
server.port=8080

#kafka配置
spring.kafka.bootstrap-servers=hhb:9092

## producer的配置
spring.kafka.producer.key-serializer=org.apache.kafka.common.serialization.IntegerSerializer
spring.kafka.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
# 生产者每个批次最多放多少条记录
spring.kafka.producer.batch-size=16384
#生产者端总的可用缓冲区大小,此处设置为32M
spring.kafka.producer.buffer-memory=33554432

## consumer的配置
spring.kafka.consumer.key-deserializer=org.apache.kafka.common.serialization.IntegerDeserializer
spring.kafka.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
#消费者分组
spring.kafka.consumer.group-id=springboot-consumer-1
## 当服务器端没有该消费者的offset的偏移量,下次提交应该如何处理。earliest:从最早的
spring.kafka.consumer.auto-offset-reset=earliest
## 消费者的事务是自动提交还是游动提交,true是自动提交
spring.kafka.consumer.enable-auto-commit=true
##如果设置为自动提交,需要设置消费者偏移量自动提交的时间间隔
spring.kafka.consumer.auto-commit-interval=1000

消费者

package com.hhb.kafka.controller;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;

/**
 * @description:
 * @author: huanghongbo
 * @date: 2020-08-13 11:35
 **/
@Component
public class KafkaConsumerController {

    private final static Logger logger = LoggerFactory.getLogger(KafkaConsumerController.class);

    /**
     * 消费者消费消息
     *
     * @param record
     */
    @KafkaListener(topics = "topic-spring-01")
    public void onMessage(ConsumerRecord<Integer, String> record) {
        logger.info("消费者:分区:" + record.partition() +
                ",主题:" + record.topic() +
                ",提交偏移量:" + record.offset() +
                ",key :  " + record.key() +
                ",value: " + record.value());
    }
}

生产者

package com.hhb.kafka.controller;

import org.apache.kafka.clients.producer.RecordMetadata;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

import java.util.concurrent.ExecutionException;

/**
 * @description:
 * @author: huanghongbo
 * @date: 2020-08-13 10:15
 **/
@RestController
public class KafkaProducerController {

    private final static Logger logger = LoggerFactory.getLogger(KafkaProducerController.class);

    @Autowired
    private KafkaTemplate<Integer, String> kafkaTemplate;

    /**
     * 同步的方式发送数据
     *
     * @param message
     * @return
     */
    @GetMapping("/sync/send")
    public String syncSend(@RequestParam("message") String message) {
        ListenableFuture<SendResult<Integer, String>> future = kafkaTemplate.send("topic-spring-01", 0, 0, message);
        //同步发送数据
        SendResult<Integer, String> sendResult = null;
        try {
            sendResult = future.get();
            RecordMetadata recordMetadata = sendResult.getRecordMetadata();
            logger.info("同步发送:分区:" + recordMetadata.partition() + ",主题:" + recordMetadata.topic() + ",提交偏移量:" + recordMetadata.offset());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
        return "success";
    }


    /**
     * 异步的方式发送数据
     *
     * @param message
     * @return
     */
    @GetMapping("/async/send")
    public String asyncSend(@RequestParam("message") String message) {
        ListenableFuture<SendResult<Integer, String>> future = kafkaTemplate.send("topic-spring-01", 0, 1, message);
        // 设置一个回调函数
        future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>() {

            /**
             * 如果发送失败了,执行的方法
             *
             * @param throwable
             */
            @Override
            public void onFailure(Throwable throwable) {
                logger.info("发送消息失败了" + throwable.getMessage());
            }

            /**
             * 如果发送成功了,执行的方法
             *
             * @param integerStringSendResult
             */
            @Override
            public void onSuccess(SendResult<Integer, String> integerStringSendResult) {
                RecordMetadata consumerRecord = integerStringSendResult.getRecordMetadata();
                logger.info("异步发送:分区:" + consumerRecord.partition() + ",主题:" + consumerRecord.topic() + ",提交偏移量:" + consumerRecord.offset());
            }
        });
        return "success";
    }
}

可以重写配置

package com.hhb.kafka.config;

import org.apache.kafka.clients.admin.NewTopic;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.core.KafkaAdmin;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;

import java.util.HashMap;
import java.util.Map;

/**
 * @description:
 * @author: huanghongbo
 * @date: 2020-08-13 13:52
 **/
@Configuration
public class KafkaConfig {

    /**
    * 新建Topic
    */
    @Bean
    public NewTopic topic1() {
        //第一个参数为topicName,第二个为:该topic有几个分区,第三个表示:有几个副本
        return new NewTopic("nptc-01", 5, (short) 1);
    }

    /**
    * 新建Topic
    */
    @Bean
    public NewTopic topic2() {
        //第一个参数为topicName,第二个为:该topic有几个分区,第三个表示:有几个副本
        return new NewTopic("nptc-02", 3, (short) 1);
    }


    /**
     * 重写KafkaAdmin的配置
     *
     * @return
     */
//    @Bean
    public KafkaAdmin kafkaAdmin() {
        Map<String, Object> config = new HashMap<>();
        config.put("bootstrap.servers", "hhb:9092");
        KafkaAdmin kafkaAdmin = new KafkaAdmin(config);
        return kafkaAdmin;
    }

    /**
     * 覆盖原有的KafkaTemplate的设置
     *
     * @param producerFactory
     * @return
     */
//    @Bean
//    @Autowired
    public KafkaTemplate<Integer, String> kafkaTemplate(ProducerFactory<Integer, String> producerFactory) {
        //浦发原有的配置
        Map<String, Object> config = new HashMap<>();
        config.put(ProducerConfig.BATCH_SIZE_CONFIG, 200);
        KafkaTemplate<Integer, String> kafkaTemplate = new KafkaTemplate<Integer, String>(producerFactory, config);
        return kafkaTemplate;
    }
}

服务端参数配置

$KAFKA_HOME/config/server.properties文件中的配置。

Zookeeper.connect

该参数用于配置Kafka要连接的Zookeeper/集群的地址。 它的值是一个字符串,使用逗号分隔Zookeeper的多个地址。Zookeeper的单个地址是 host:port 形式的,可以在最后添加Kafka在Zookeeper中的根节点路径。 如:

zookeeper.connect=node2:2181,node3:2181,node4:2181/myKafka

Listeners

用于指定当前Broker向外发布服务的地址和端口。 与 advertised.listeners 配合,用于做内外网隔离。

内外网隔离配置

listener.security.protocol.map :监听器名称和安全协议的映射配置。 比如,可以将内外网隔离,即使它们都使用SSL。 listener.security.protocol.map=INTERNAL:SSL,EXTERNAL:SSL 每个监听器的名称只能在map中出现一次。

inter.broker.listener.name :用于配置broker之间通信使用的监听器名称,该名称必须在advertised.listeners列表中。 inter.broker.listener.name=EXTERNAL

listeners:用于配置broker监听的URI以及监听器名称列表,使用逗号隔开多个URI及监听器名称。 如果监听器名称代表的不是安全协议,必须配置listener.security.protocol.map。 每个监听器必须使用不同的网络端口。

advertised.listeners 需要将该地址发布到zookeeper供客户端使用,如果客户端使用的地址与listeners配置不同。 可以在zookeeper的中找到。在IaaS环境,该条目的网络接口得与broker绑定的网络接口不同。 如果不设置此条目,就使用listeners的配置。跟listeners不同,该条目不能使用0.0.0.0网络端口。 advertised.listeners的地址必须是listeners中配置的或配置的一部分。

典型配置
典型配置.png

broker.id

该属性用于唯一标记一个Kafka的Broker,它的值是一个任意integer值。当Kafka以分布式集群运行的时候,尤为重要。最好该值跟该Broker所在的物理主机有关的,如主机名为 host1.lagou.com ,则 broker.id=1 , 如果主机名为 192.168.100.101 ,则 broker.id=101 等等。

log.dir

通过该属性的值,指定Kafka在磁盘上保存消息的日志片段的目录。它是一组用逗号分隔的本地文件系统路径。如果指定了多个路径,那么broker 会根据“最少使用”原则,把同一个分区的日志片段保存到同一个路径下。broker会往拥有最少数目分区的路径新增分区,而不是往拥有最小磁盘空间的路径新增分区。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容