#2.1.7 Pandas Internals: Series.md

1.pandas.series

指定了对象Series使用自定义字符串索引

input
# Import the Series object from pandas
from pandas import Series

film_names = series_film.values
rt_scores = series_rt.values
series_custom = Series(rt_scores, index=film_names)
series_custom[['Minions (2015)', 'Leviathan (2014)']]
print(series_custom.head(5))
output
Avengers: Age of Ultron (2015)   74
Cinderella (2015)                 85
Ant-Man (2015)                   80
Do You Believe? (2015)           18
Hot Tub Time Machine 2 (2015)     14
dtype: int64

2.Reindexing

reindex()允许我们为对象Series中的标签(索引)指定不同的顺序。该方法接收与该系列对象所需的顺序相对应的字符串列表。
我们可以使用reindex()方法通过电影按字母顺序排序series_custom。要做到这一点,我们需要:

  • 使用tolist()返回当前索引的列表表示。
  • 使用sorted()对索引进行排序。
  • 使用reindex()设置新排序的索引。
input
original_index = series_custom.index
original_index_sorted = sorted(original_index)
sorted_by_index = series_custom.reindex(original_index_sorted)
print(sorted_by_index.head(10))
output
'71 (2015)                    97
5 Flights Up (2015)           52
A Little Chaos (2015)         40
A Most Violent Year (2014)    90
About Elly (2015)             97
Aloha (2015)                  19
American Sniper (2015)        72
American Ultra (2015)         46
Amy (2015)                    97
Annie (2014)                  27
dtype: int64

3.Sorting

input
sc2 = series_custom.sort_index()
sc3 = series_custom.sort_values()
print(sc2.head(10))
print('-----------------------')
print(sc3.head(10))
output
'71 (2015)                    97
5 Flights Up (2015)           52
A Little Chaos (2015)         40
A Most Violent Year (2014)    90
About Elly (2015)             97
Aloha (2015)                  19
American Sniper (2015)        72
American Ultra (2015)         46
Amy (2015)                    97
Annie (2014)                  27
dtype: int64
-----------------------
Paul Blart: Mall Cop 2 (2015)     5
Hitman: Agent 47 (2015)           7
Hot Pursuit (2015)                8
Fantastic Four (2015)             9
Taken 3 (2015)                    9
The Boy Next Door (2015)         10
The Loft (2015)                  11
Unfinished Business (2015)       11
Mortdecai (2015)                 12
Seventh Son (2015)               12
dtype: int64

4.Comparing and Filtering

input
criteria_one = series_custom > 50
criteria_two = series_custom < 75
both_criteria = series_custom[criteria_one & criteria_two]
print(both_criteria.head(5))
output
Avengers: Age of Ultron (2015)    74
The Water Diviner (2015)          63
Unbroken (2014)                   51
Southpaw (2015)                   59
Insidious: Chapter 3 (2015)       59
dtype: int64

5.Alignment

input
rt_critics = Series(fandango['RottenTomatoes'].values, index=fandango['FILM'])
rt_users = Series(fandango['RottenTomatoes_User'].values, index=fandango['FILM'])
rt_mean = (rt_critics + rt_users)/2
print(rt_mean.head(5))
output
FILM
Avengers: Age of Ultron (2015)    80.0
Cinderella (2015)                 82.5
Ant-Man (2015)                    85.0
Do You Believe? (2015)            51.0
Hot Tub Time Machine 2 (2015)     21.0
dtype: float64
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容