LiveData
LiveData是一种具有生命周期感知能力的可观察数据持有类。
LiveData可以保证屏幕上的显示内容和数据一直保持同步。
- LiveData了解UI界面的状态,如果activity不在屏幕上显示,LiveData不会触发没必要的界面更新,如果activity已经被销毁,会自动清空与Observer的连接,意外的调用就不会发生。
- LiveData是一个LifecycleOwner,他可以直接感知activity或Fragment的生命周期。
1.定义LiveData
在项目中,LiveData一般是存放在ViewModel中,以保证app配置变更时,数据不会丢失。
2.使用流程
使用流程其实很简单,就是自定义实现一个Observer观察者,然后在Activity或者Fragment中获取到ViewModel,通过ViewModel获取到对应的LiveData,然后给LiveData添加观察者监听,用来监听LiveData中的数据变化,在Observer的onChanged中使用监听回调数据。
在使用LiveData的时候需要注意,LiveData有两个设置数据的方法,一个是setValue,一个是postValue,setValue只能是在主线程使用,而postValue只能在子线程中使用。
3.核心原理
(1)LiveData.observe(@NonNull LifecycleOwner owner, @NonNull Observer<? super T> observer)
LiveData添加观察者监听,可以看到LiveData的observe方法,使用了@MainThread注释,表明该观察者监听添加的方法,只能是在主线程中使用,如果不是在主线程中使用,则会抛出异常。
@MainThread
public void observe(@NonNull LifecycleOwner owner, @NonNull Observer<? super T> observer) {
// 判断是否是在主线程中使用
assertMainThread("observe");
// 如果Activity或者Fragment的状态已经是onDestroy,那么就不可以添加观察者监听
if (owner.getLifecycle().getCurrentState() == DESTROYED) {
// ignore
return;
}
// 将LifecycleOwner和Observer实现对象封装成LifecycleBoundObserver
// 而LifecycleBoundObserver是ObserverWrapper的子类,
// 并且实现了LifecycleEventObserver接口
LifecycleBoundObserver wrapper = new LifecycleBoundObserver(owner, observer);
// 往LiveData中的mObservers集合添加对应的wrapper对象
// 这样做的目的,就是为了用来在LiveData更新的时候进行通知观察者
ObserverWrapper existing = mObservers.putIfAbsent(observer, wrapper);
if (existing != null && !existing.isAttachedTo(owner)) {
throw new IllegalArgumentException("Cannot add the same observer"
+ " with different lifecycles");
}
if (existing != null) {
return;
}
owner.getLifecycle().addObserver(wrapper);
}
// LifecycleRegistry.java
@Override
public void addObserver(@NonNull LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}
static class ObserverWithState {
State mState;
LifecycleEventObserver mLifecycleObserver;
ObserverWithState(LifecycleObserver observer, State initialState) {
mLifecycleObserver = Lifecycling.lifecycleEventObserver(observer);
mState = initialState;
}
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
}
// Lifecycling.java
@NonNull
static LifecycleEventObserver lifecycleEventObserver(Object object) {
boolean isLifecycleEventObserver = object instanceof LifecycleEventObserver;
boolean isFullLifecycleObserver = object instanceof FullLifecycleObserver;
if (isLifecycleEventObserver && isFullLifecycleObserver) {
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object,
(LifecycleEventObserver) object);
}
if (isFullLifecycleObserver) {
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object, null);
}
if (isLifecycleEventObserver) {
return (LifecycleEventObserver) object;
}
final Class<?> klass = object.getClass();
int type = getObserverConstructorType(klass);
if (type == GENERATED_CALLBACK) {
List<Constructor<? extends GeneratedAdapter>> constructors =
sClassToAdapters.get(klass);
if (constructors.size() == 1) {
GeneratedAdapter generatedAdapter = createGeneratedAdapter(
constructors.get(0), object);
return new SingleGeneratedAdapterObserver(generatedAdapter);
}
GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()];
for (int i = 0; i < constructors.size(); i++) {
adapters[i] = createGeneratedAdapter(constructors.get(i), object);
}
return new CompositeGeneratedAdaptersObserver(adapters);
}
return new ReflectiveGenericLifecycleObserver(object);
}
在LiveData添加观察者的时候,因为LifecycleBoundObserver实际上也是实现了LifecycleEventObserver接口的,所以在Lifecycling.lifecycleEventObserver对观察者对象做封装的时候,也是直接返回传入的观察者对象,不做任何的处理
(2)LiveData.LifecycleBoundObserver类
LifecycleBoundObserver中封装了LifecycleOwner对象和Observer对象,并且实现了LifecycleEventObserver接口,根据Lifecycle的原理,其实我们可以知道,LifecycleRegistry.addObserver方法,添加的就是LifecycleEventObserver实现了对象。
所以在Activity使用LiveData,添加观察者,其实其内部最终还是给Activity的LifecycleRegistry添加观察者,然后根据Activity的生命周期的变化对LiveData进行通知。
class LifecycleBoundObserver extends ObserverWrapper implements LifecycleEventObserver {
// 封装LifecycleOwner实现类对象
@NonNull
final LifecycleOwner mOwner;
LifecycleBoundObserver(@NonNull LifecycleOwner owner, Observer<? super T> observer) {
super(observer);
mOwner = owner;
}
@Override
boolean shouldBeActive() {
// 这个其实就是判断Activity当前状态是否大于等于STARTED,比如RESUMED
return mOwner.getLifecycle().getCurrentState().isAtLeast(STARTED);
}
@Override
public void onStateChanged(@NonNull LifecycleOwner source,
@NonNull Lifecycle.Event event) {
if (mOwner.getLifecycle().getCurrentState() == DESTROYED) {
removeObserver(mObserver);
return;
}
activeStateChanged(shouldBeActive());
}
@Override
boolean isAttachedTo(LifecycleOwner owner) {
return mOwner == owner;
}
@Override
void detachObserver() {
mOwner.getLifecycle().removeObserver(this);
}
}
// ObserverWrapper内部封装了观察者对象
private abstract class ObserverWrapper {
final Observer<? super T> mObserver;
boolean mActive;
int mLastVersion = START_VERSION;
ObserverWrapper(Observer<? super T> observer) {
mObserver = observer;
}
abstract boolean shouldBeActive();
boolean isAttachedTo(LifecycleOwner owner) {
return false;
}
void detachObserver() {
}
// 这是在生命周期发生变化的时候分发通知的
void activeStateChanged(boolean newActive) {
if (newActive == mActive) {
return;
}
// immediately set active state, so we'd never dispatch anything to inactive
// owner
mActive = newActive;
// 如果是不活跃状态
boolean wasInactive = LiveData.this.mActiveCount == 0;
LiveData.this.mActiveCount += mActive ? 1 : -1;
if (wasInactive && mActive) {
onActive();
}
if (LiveData.this.mActiveCount == 0 && !mActive) {
onInactive();
}
if (mActive) {
dispatchingValue(this);
}
}
}
(3)setValue和postValue
@MainThread
protected void setValue(T value) {
// 判断当前线程是否是主线程,如果不是主线程,就抛出异常
assertMainThread("setValue");
mVersion++;
mData = value;
// 通知观察者
dispatchingValue(null);
}
protected void postValue(T value) {
boolean postTask;
synchronized (mDataLock) {
postTask = mPendingData == NOT_SET;
mPendingData = value;
}
if (!postTask) {
return;
}
// 分发执行任务
ArchTaskExecutor.getInstance().postToMainThread(mPostValueRunnable);
}
setValue的通知更新
void dispatchingValue(@Nullable ObserverWrapper initiator) {
if (mDispatchingValue) {
mDispatchInvalidated = true;
return;
}
mDispatchingValue = true;
do {
mDispatchInvalidated = false;
if (initiator != null) {
considerNotify(initiator);
initiator = null;
} else {
for (Iterator<Map.Entry<Observer<? super T>, ObserverWrapper>> iterator =
mObservers.iteratorWithAdditions(); iterator.hasNext(); ) {
// 通知观察者,参数是ObserverWrapper类型的对象
// 其实就是LifecycleBoundObserver对象
considerNotify(iterator.next().getValue());
if (mDispatchInvalidated) {
break;
}
}
}
} while (mDispatchInvalidated);
mDispatchingValue = false;
}
private void considerNotify(ObserverWrapper observer) {
if (!observer.mActive) {
return;
}
// Check latest state b4 dispatch. Maybe it changed state but we didn't get the event yet.
//
// we still first check observer.active to keep it as the entrance for events. So even if
// the observer moved to an active state, if we've not received that event, we better not
// notify for a more predictable notification order.
if (!observer.shouldBeActive()) {
observer.activeStateChanged(false);
return;
}
if (observer.mLastVersion >= mVersion) {
return;
}
observer.mLastVersion = mVersion;
// observer是ObserverWrapper对象,其实现类是LifecycleBoundObserver
// LifecycleBoundObserver内部封装了mObserver观察者
// 在这里调用观察者的onChanged()传入新的数据,就是通知观察者进行更新
observer.mObserver.onChanged((T) mData);
}
postValue的通知更新
postValue的通知更新,其实就是调动任务栈分发任务,而被分发执行的任务实现如下:
private final Runnable mPostValueRunnable = new Runnable() {
@SuppressWarnings("unchecked")
@Override
public void run() {
Object newValue;
synchronized (mDataLock) {
newValue = mPendingData;
mPendingData = NOT_SET;
}
setValue((T) newValue);
}
};
从这里可以看到,其实postValue在分发的任务中,其内部实现的依然是setValue()方法,只不过是从子线程切换到了主线程进行执行。做了一次线程的切换。
在postValue方法中,其内部调用的是ArchTaskExecutor的postToMainThread方法。
// ArchTaskExecutor.java
private ArchTaskExecutor() {
mDefaultTaskExecutor = new DefaultTaskExecutor();
mDelegate = mDefaultTaskExecutor;
}
@Override
public void postToMainThread(Runnable runnable) {
mDelegate.postToMainThread(runnable);
}
在这里可以看到mDelegate其实就是DefaultTaskExecutor对象
所以mDelegate.postToMainThread(runnable)其实就是调用了DefaultTaskExecutor.postToMainThread方法。
// DefaultTaskExecutor.java
@Override
public void postToMainThread(Runnable runnable) {
if (mMainHandler == null) {
synchronized (mLock) {
if (mMainHandler == null) {
mMainHandler = createAsync(Looper.getMainLooper());
}
}
}
//noinspection ConstantConditions
mMainHandler.post(runnable);
}
在这里可以看到,mMainHandler其实就是通过主线程的Looper实例创建的Handler对象,所以这里Handler发送消息执行任务,就是在主线程中执行该任务。
(4)dispatchingValue消息分发
void dispatchingValue(@Nullable ObserverWrapper initiator) {
if (mDispatchingValue) {
mDispatchInvalidated = true;
return;
}
mDispatchingValue = true;
do {
mDispatchInvalidated = false;
if (initiator != null) {
considerNotify(initiator);
initiator = null;
} else {
for (Iterator<Map.Entry<Observer<? super T>, ObserverWrapper>> iterator =
mObservers.iteratorWithAdditions(); iterator.hasNext(); ) {
considerNotify(iterator.next().getValue());
if (mDispatchInvalidated) {
break;
}
}
}
} while (mDispatchInvalidated);
mDispatchingValue = false;
}
private void considerNotify(ObserverWrapper observer) {
if (!observer.mActive) {
return;
}
// Check latest state b4 dispatch. Maybe it changed state but we didn't get the event yet.
//
// we still first check observer.active to keep it as the entrance for events. So even if
// the observer moved to an active state, if we've not received that event, we better not
// notify for a more predictable notification order.
if (!observer.shouldBeActive()) {
observer.activeStateChanged(false);
return;
}
if (observer.mLastVersion >= mVersion) {
return;
}
observer.mLastVersion = mVersion;
//noinspection unchecked
observer.mObserver.onChanged((T) mData);
}
LiveData在分发消息的时候,会调用dispatchingValue方法循环分发,当消息分发完成之后,其实并不会退出do-while循环,还会在调用considerNotify方法的内部调用observer.activeStateChanged(false);继续执行第二次dispatchingValue方法,也就是说递归执行,在第二次执行的时候,mDispatchingValue = true,就会执行将mDispatchInvalidated = true,那么就会完成dispatchingValue方法的第二次执行,被直接return,那么considerNotify()方法的执行也就完成,此时就会执行considerNotify之后的if条件,因为在dispatchingValue第二次执行的时候将mDispatchInvalidated设置为了true,就直接break跳出了循环,结束了消息的分发。
但是这样的情况,一般是在存在观察者处于ON_STOP或者已经是ON_DESTROY状态的时候。
如果观察者都是处于onResume,那么这个时候会因为mDispatchInvalidated=false而退出了循环,结束分发。
4.粘性事件
但是如果是先setValue,然后再设置Observer的话。
@MainThread
public void observe(@NonNull LifecycleOwner owner, @NonNull Observer<? super T> observer) {
assertMainThread("observe");
if (owner.getLifecycle().getCurrentState() == DESTROYED) {
// ignore
return;
}
LifecycleBoundObserver wrapper = new LifecycleBoundObserver(owner, observer);
ObserverWrapper existing = mObservers.putIfAbsent(observer, wrapper);
if (existing != null && !existing.isAttachedTo(owner)) {
throw new IllegalArgumentException("Cannot add the same observer"
+ " with different lifecycles");
}
if (existing != null) {
return;
}
owner.getLifecycle().addObserver(wrapper);
}
因为此时设置Observer的时候,当生命周期发生变化的时候,又会调用回调onStateChanged方法,进而调用activeStateChanged方法
class LifecycleBoundObserver extends ObserverWrapper implements LifecycleEventObserver {
@NonNull
final LifecycleOwner mOwner;
LifecycleBoundObserver(@NonNull LifecycleOwner owner, Observer<? super T> observer) {
super(observer);
mOwner = owner;
}
@Override
boolean shouldBeActive() {
return mOwner.getLifecycle().getCurrentState().isAtLeast(STARTED);
}
@Override
public void onStateChanged(@NonNull LifecycleOwner source,
@NonNull Lifecycle.Event event) {
if (mOwner.getLifecycle().getCurrentState() == DESTROYED) {
removeObserver(mObserver);
return;
}
// 这里传入的应该是true
activeStateChanged(shouldBeActive());
}
@Override
boolean isAttachedTo(LifecycleOwner owner) {
return mOwner == owner;
}
@Override
void detachObserver() {
mOwner.getLifecycle().removeObserver(this);
}
}
// 而第一次的时候,mActive默认是false
void activeStateChanged(boolean newActive) {
if (newActive == mActive) {
return;
}
// immediately set active state, so we'd never dispatch anything to inactive
// owner
mActive = newActive;
boolean wasInactive = LiveData.this.mActiveCount == 0;
LiveData.this.mActiveCount += mActive ? 1 : -1;
if (wasInactive && mActive) {
onActive();
}
if (LiveData.this.mActiveCount == 0 && !mActive) {
onInactive();
}
// 变成了true的时候,又会调用一次分发
if (mActive) {
dispatchingValue(this);
}
}
void dispatchingValue(@Nullable ObserverWrapper initiator) {
if (mDispatchingValue) {
mDispatchInvalidated = true;
return;
}
mDispatchingValue = true;
do {
mDispatchInvalidated = false;
if (initiator != null) {
considerNotify(initiator);
initiator = null;
} else {
for (Iterator<Map.Entry<Observer<? super T>, ObserverWrapper>> iterator =
mObservers.iteratorWithAdditions(); iterator.hasNext(); ) {
considerNotify(iterator.next().getValue());
if (mDispatchInvalidated) {
break;
}
}
}
} while (mDispatchInvalidated);
mDispatchingValue = false;
}
private void considerNotify(ObserverWrapper observer) {
if (!observer.mActive) {
return;
}
// Check latest state b4 dispatch. Maybe it changed state but we didn't get the event yet.
//
// we still first check observer.active to keep it as the entrance for events. So even if
// the observer moved to an active state, if we've not received that event, we better not
// notify for a more predictable notification order.
if (!observer.shouldBeActive()) {
observer.activeStateChanged(false);
return;
}
if (observer.mLastVersion >= mVersion) {
return;
}
observer.mLastVersion = mVersion;
observer.mObserver.onChanged((T) mData);
}
因为在添加Observer之前,已经针对该LiveData设置了一个value,此时添加了观察者,那么又因为生命周期发生了变化,那么该观察者在调用dispatchingValue(this);传入的就不是null,则在do-while循环的if判断中,就会执行if条件,进而调用considerNotify()方法给传入的ObserverWrapper实现类分发消息,那么就会把之前设置的消息分发给了该观察者。
这样的情况就是LiveData的粘性事件。即后注册的观察者接收到了之前LiveData设置的value消息。
那么问题又一次来了,什么时候会触发调用LifecycleBoundObserver的onStateChanged方法呢?
通过LiveData的observe方法进行分析,我们可以知道给LiveData添加观察者的时候,其实就是通过给实现了LifecycleOwner接口的Activity的getLifecycle()方法获取到的LifecycleRegistry对象添加观察者,而LifecycleRegistry中的addObserver方法,就会先满足while条件,然后执行了ObserverWithState.dispatchEvent方法,此时就会调用到了LifecycleBoundObserver.onStateChanged方法
这里为什么会满足while条件呢?calculateTargetState会获取当前Activity生命周期状态的前一个和后一个状态,然后取更小的那个状态,在addObserver的时候,calculateTargetState这里如果activity是onStart的状态,那么calculateTargetState取出的就是CREATED状态,如果activity是onResume的状态,那么这里取出的就是STARTED,不管怎么样都会大于INITIALIZED状态,那么就会满足while条件,此时第二个activity是在onCreate生命周期调用observe方法注册Observer
// LifecycleRegistry.java
@Override
public void addObserver(@NonNull LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}
其实这里个人感觉,应该是在addObserver之后,因为第二个Activity(也就是添加addObserver的)发生了生命周期变化,从onCreate变成了onStart,从onStart变成onResume,此时就会调用moveToState,然后就会调用forwardPass(),然后就会分发消息,因为之前已经postValue或者setValue了,那么在这个LiveData里的mData就不会为null,有消息了,就可以优先分发一次。
满足while条件后,就会调用statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));,这里最终就会调用LifecycleBoundObserver的
@Override
public void onStateChanged(@NonNull LifecycleOwner source,
@NonNull Lifecycle.Event event) {
if (mOwner.getLifecycle().getCurrentState() == DESTROYED) {
removeObserver(mObserver);
return;
}
activeStateChanged(shouldBeActive());
}
这里shouldBeActive(),在Activity的最后的生命周期是onResume的时候,就会满足true,那么此时activeStateChanged()传入的参数就是true,而初始的时候,mActive为false
void activeStateChanged(boolean newActive) {
if (newActive == mActive) {
return;
}
// immediately set active state, so we'd never dispatch anything to inactive
// owner
mActive = newActive;
boolean wasInactive = LiveData.this.mActiveCount == 0;
LiveData.this.mActiveCount += mActive ? 1 : -1;
if (wasInactive && mActive) {
onActive();
}
if (LiveData.this.mActiveCount == 0 && !mActive) {
onInactive();
}
if (mActive) {
dispatchingValue(this);
}
}
此时mActive就会重新赋值为true,那么就会调用dispatchingValue()方法,此时dispatchingValue()的参数传入this,那么就不会为false。
一般常用的粘性事件解决方案,其实就是hook修改mLastVersion的值,让这个值变成与mVersion的值一致,但是如果是在onResume或者onStart的生命周期去添加注册观察者,那么常见的粘性事件解决方案中,因为会调用super.observe(),那么就会因为在LifecycleRegistry.addObserver方法中,满足while条件,从而又会进行LifecycleBoundObserver的onStateChanged方法的回调,这样又会出现粘性事件。这样的情况的解决方案,其实可以hook修改mVersion的值,在注册观察者之前,改成-1