LeetCode677. Map Sum Pairs

Analysis

Brute-force solution

Apparently, a straightforward brute-force solution would be to store every {key, value} pair into a HashSet. And once the sum(String prefix) function is called, we scan the whole HashSet's key set, and use String.startswith() to select keys that satisfiy our prefix requirement. Then we add up all the values and return.

Complexity

For each insert operation, the time complexity is O(1). For each sum operation, the time complexity is O(m*n) where m is the total number of keys being stored and n is the length of input prefix.

The space used by the HashMap is liner to the size of all input keys and values.

Optimization1: Use a Trie to store the {key:value} relationship

Considering that we are compare prefix, a Trie (prefix tree) is naturally appropriate for this task. So for each insert operation, we can use a Trie to store the input keys and at the end Trie node of each key, we store the value in this node.

For every sum operation, we just start from the root of the Trie and looking for the first TrieNode that has a prefix matches the given prefix. And from this node, we perform a BFS to get every key in its child branch and sum up the values.

Complexity

Each insert operation will take O(n) time where n is the length of the input key.

Each sum operation will take O(m*k) time where m is the length of the prefix and k is the number of words start with this this prefix.

The space used by the Trie is liner to the size of the total input.

Implementation

A Java implementation is showed as following:

class MapSum {
    class TrieNode {
        char curr;
        TrieNode[] child;
        boolean isEnd;
        int value;
        
        TrieNode(char curr) {
            this.curr = curr;
            this.child = new TrieNode[26];
        }
    }
    
    TrieNode root;

    /** Initialize your data structure here. */
    public MapSum() {
        // setup a dummy root node
        this.root = new TrieNode(' ');
    }
    
    public void insert(String key, int val) {
        char[] charKey = key.toCharArray();
        TrieNode pointer = this.root;
        for (char c : charKey) {
            if (pointer.child[c - 'a'] == null) {
                TrieNode curr = new TrieNode(c);
                pointer.child[c - 'a'] = curr;
            }
            pointer = pointer.child[c - 'a'];
        }
        pointer.isEnd = true;
        pointer.value = val;
    }
    
    public int sum(String prefix) {
        int ret = 0;
        if (prefix == null || prefix.isEmpty()) {
            return ret;
        }
        char[] charPrefix = prefix.toCharArray();
        TrieNode pointer = this.root;
        for (char c : charPrefix) {
            if (pointer.child[c - 'a'] == null) {
                return ret;
            }
            
            pointer = pointer.child[c - 'a'];
        }
        
        Queue<TrieNode> queue = new LinkedList<TrieNode>();
        queue.offer(pointer);
        while (!queue.isEmpty()) {
            TrieNode curr = queue.poll();
            ret += curr.value;
            for (TrieNode t : curr.child) {
                if (t == null) {
                    continue;
                }
                queue.offer(t);
            }
        }
        
        return ret;
    }
}

Optimization2: Store the sum directly

Actually there is still some unnecessary work we have done in the above approach. Since we only cares about the prefix sum rather than the exact value that is related to this key, we do not need to store the values corresponding to each input key. Instead, we can store the sum of current prefix in the Trie. In this way, the insert is still the same with the above process, but during the insert process, rather than only store the value at the end TrieNode of current key, we store the sum of every prefix along the way.

Complexity

The time complexity of insert operation is O(n) where n is the length of the input key.

The time complexity of sum operation is O(m) where m is the length of the input prefix.

The space used is still linear to the total input size.

Implementation

A Java implementation is showed as following:

class MapSum {
    class TrieNode {
        TrieNode[] child = new TrieNode[26];
        int val;
    }
    
    HashMap<String, Integer> map;
    TrieNode root;

    /** Initialize your data structure here. */
    public MapSum() {
        this.map = new HashMap<>();
        this.root = new TrieNode();
    }
    
    public void insert(String key, int val) {
        int delta = val - map.getOrDefault(key, 0);
        map.put(key, val);
        TrieNode curr = this.root;
        curr.val += delta;
        for (char c : key.toCharArray()) {
            if (curr.child[c - 'a'] == null) {
                curr.child[c - 'a'] = new TrieNode();
                curr.child[c - 'a'].val = delta;
            } else {
                curr.child[c - 'a'].val += delta;
            }
            
            curr = curr.child[c - 'a'];
        }
    }
    
    public int sum(String prefix) {
        if (prefix == null || prefix.isEmpty()) {
            return 0;
        }
        TrieNode curr = this.root;
        for (char c : prefix.toCharArray()) {
            if (curr.child[c - 'a'] == null) {
                return 0;
            }
            curr = curr.child[c - 'a'];
        }
        
        return curr.val;
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,179评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,229评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,032评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,533评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,531评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,539评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,916评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,813评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,568评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,654评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,354评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,918评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,152评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,852评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,378评论 2 342

推荐阅读更多精彩内容

  • 有理想的人生PK风险 现在我个人觉得有理想的人生,并不是满满幸福快乐的人生。 因为平淡的生活有了理想,肯定是奋斗的...
    李修竹阅读 156评论 0 0
  • 视网膜屏幕确实能够营造极佳的阅读体验,有人拿iPad看电影,有人读小说,有人追漫画。为什么不拿来阅读代码呢? 语法...
    超级无敌变形铁金刚阅读 9,092评论 1 5
  • 我们在生活中很难得到一种坦诚和真实的沟通,因为这需要同等的对手。但在写作中可以得到,因为你可以自己和自己对话。而同...
    kwfs笔记阅读 143评论 0 0
  • 温岭:洪昌先生(二) □王红娟 悠悠虎头山, 武松落脚处,二郎缚龙处, 今有洪昌先生登高处, 空留碧山 江山梦?...
    朝花夕拾杯中酒123阅读 296评论 0 2