不学前端也可以做UI?机器学习UI框架Streamlit简介—入门配置

不用学前端编程,你就能用 Python 简单高效写出漂亮的交互式 Web 应用,将你的数据分析成果立即展示给团队和客户 —— 少数派

Streamlit 介绍

Streamlit 是一个针对数据科学家设计的开源WEB框架,它可以使数据工程师能够围绕其数据,机器学习模型等几乎所有内容快速构建高度交互的Web应用程序。而且使用Streamlit开发自己的APP,只需要使用数据科学家最为熟悉Python语言,无需其他前端知识,使用它可以轻松展示展示数据,图片,JSON和代码等。

Streamlit 优点

  • 只需使用Python语言; 无需HTML/JavaScript等前端知识!
  • 使用少量的代码便可以创建漂亮的应用程序
  • 使用caching优化了数据计算过程

环境配置

Prerequisites
  • Python > 3.6
  • PIP
Streamlit 安装
pip install streamlit
Streamlit 导入
import streamlit as st

在安装完streanlit以后,你便可以使用streanlit命令来运行你的代码

image.png

为了帮助你更好的理解streanlit的运行方式,Streamlit官方提供了一个Demo,你可以使用一下命令运行。

streamlit hello

接下来就可以使用访问本地的 http://localhost:8502/ 体验Demo的效果

image.png

streamlit的Demo共提供了四种不同的例子
image.png

-Animation Demo
该例子展示了如何使用streamlit来制作酷炫的动画
image.png

import numpy as np

# Interactive Streamlit elements, like these sliders, return their value.
# This gives you an extremely simple interaction model.
iterations = st.sidebar.slider("Level of detail", 2, 20, 10, 1)
separation = st.sidebar.slider("Separation", 0.7, 2.0, 0.7885)

# Non-interactive elements return a placeholder to their location
# in the app. Here we're storing progress_bar to update it later.
progress_bar = st.sidebar.progress(0)

# These two elements will be filled in later, so we create a placeholder
# for them using st.empty()
frame_text = st.sidebar.empty()
image = st.empty()

m, n, s = 960, 640, 400
x = np.linspace(-m / s, m / s, num=m).reshape((1, m))
y = np.linspace(-n / s, n / s, num=n).reshape((n, 1))

for frame_num, a in enumerate(np.linspace(0.0, 4 * np.pi, 100)):
    # Here were setting value for these two elements.
    progress_bar.progress(frame_num)
    frame_text.text("Frame %i/100" % (frame_num + 1))

    # Performing some fractal wizardry.
    c = separation * np.exp(1j * a)
    Z = np.tile(x, (n, 1)) + 1j * np.tile(y, (1, m))
    C = np.full((n, m), c)
    M = np.full((n, m), True, dtype=bool)
    N = np.zeros((n, m))

    for i in range(iterations):
        Z[M] = Z[M] * Z[M] + C[M]
        M[np.abs(Z) > 2] = False
        N[M] = i

    # Update the image placeholder by calling the image() function on it.
    image.image(1.0 - (N / N.max()), use_column_width=True)

# We clear elements by calling empty on them.
progress_bar.empty()
frame_text.empty()

# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")
  • Plotting Demo
    使用streamlit将绘图和动画与Streamlit结合来制作图表


    image.png
import time
import numpy as np

progress_bar = st.sidebar.progress(0)
status_text = st.sidebar.empty()
last_rows = np.random.randn(1, 1)
chart = st.line_chart(last_rows)

for i in range(1, 101):
    new_rows = last_rows[-1, :] + np.random.randn(5, 1).cumsum(axis=0)
    status_text.text("%i%% Complete" % i)
    chart.add_rows(new_rows)
    progress_bar.progress(i)
    last_rows = new_rows
    time.sleep(0.05)

progress_bar.empty()

# Streamlit widgets automatically run the script from top to bottom. Since
# this button is not connected to any other logic, it just causes a plain
# rerun.
st.button("Re-run")
  • Mapping Demo


    image.png
import pandas as pd
import pydeck as pdk

@st.cache
def from_data_file(filename):
    url = (
        "https://raw.githubusercontent.com/streamlit/"
        "example-data/master/hello/v1/%s" % filename)
    return pd.read_json(url)

try:
    ALL_LAYERS = {
        "Bike Rentals": pdk.Layer(
            "HexagonLayer",
            data=from_data_file("bike_rental_stats.json"),
            get_position=["lon", "lat"],
            radius=200,
            elevation_scale=4,
            elevation_range=[0, 1000],
            extruded=True,
        ),
        "Bart Stop Exits": pdk.Layer(
            "ScatterplotLayer",
            data=from_data_file("bart_stop_stats.json"),
            get_position=["lon", "lat"],
            get_color=[200, 30, 0, 160],
            get_radius="[exits]",
            radius_scale=0.05,
        ),
        "Bart Stop Names": pdk.Layer(
            "TextLayer",
            data=from_data_file("bart_stop_stats.json"),
            get_position=["lon", "lat"],
            get_text="name",
            get_color=[0, 0, 0, 200],
            get_size=15,
            get_alignment_baseline="bottom",
        ),
        "Outbound Flow": pdk.Layer(
            "ArcLayer",
            data=from_data_file("bart_path_stats.json"),
            get_source_position=["lon", "lat"],
            get_target_position=["lon2", "lat2"],
            get_source_color=[200, 30, 0, 160],
            get_target_color=[200, 30, 0, 160],
            auto_highlight=True,
            width_scale=0.0001,
            get_width="outbound",
            width_min_pixels=3,
            width_max_pixels=30,
        ),
    }
except urllib.error.URLError as e:
    st.error("""
        **This demo requires internet access.**

        Connection error: %s
    """ % e.reason)
    return

st.sidebar.markdown('### Map Layers')
selected_layers = [
    layer for layer_name, layer in ALL_LAYERS.items()
    if st.sidebar.checkbox(layer_name, True)]
if selected_layers:
    st.pydeck_chart(pdk.Deck(
        map_style="mapbox://styles/mapbox/light-v9",
        initial_view_state={"latitude": 37.76, "longitude": -122.4, "zoom": 11, "pitch": 50},
        layers=selected_layers,
    ))
else:
    st.error("Please choose at least one layer above.")
  • DataFrame Demo


    image.png
import sys
import pandas as pd
import altair as alt

if sys.version_info[0] < 3:
    reload(sys) # noqa: F821 pylint:disable=undefined-variable
    sys.setdefaultencoding("utf-8")

@st.cache
def get_UN_data():
    AWS_BUCKET_URL = "https://streamlit-demo-data.s3-us-west-2.amazonaws.com"
    df = pd.read_csv(AWS_BUCKET_URL + "/agri.csv.gz")
    return df.set_index("Region")

try:
    df = get_UN_data()
except urllib.error.URLError as e:
    st.error(
        """
        **This demo requires internet access.**

        Connection error: %s
    """
        % e.reason
    )
    return

countries = st.multiselect(
    "Choose countries", list(df.index), ["China", "United States of America"]
)
if not countries:
    st.error("Please select at least one country.")
    return

data = df.loc[countries]
data /= 1000000.0
st.write("### Gross Agricultural Production ($B)", data.sort_index())

data = data.T.reset_index()
data = pd.melt(data, id_vars=["index"]).rename(
    columns={"index": "year", "value": "Gross Agricultural Product ($B)"}
)
chart = (
    alt.Chart(data)
    .mark_area(opacity=0.3)
    .encode(
        x="year:T",
        y=alt.Y("Gross Agricultural Product ($B):Q", stack=None),
        color="Region:N",
    )
)
st.altair_chart(chart, use_container_width=True)

参考链接

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342