TensorFlow学习8:制作数据集

将所有图片生成一个二进制数据集文件的过程

示例代码

#可以将图片和标签制作成二进制文件,读取二进制文件进行数据读取,会提高内存利用率。
#训练数据的特征用键值对的形式表示
def write_tfRecord(tfRecordName,image_path,label_path):
    #创建写入
    writer=tf.python_io.TFRecordWriter(tfRecordName)
    num_pic=0
    f=open(label_path,'r')
    contents=f.readlines()
    f.close()
    #遍历每张图和标签
    for content in contents:
        value=content.split()
        img_path=image_path+value[0]
        img=Image.open(img_path)
        img_raw=img.tobytes()
        labels=[0]*10
        lables[int(value[1])]=1
        example=tf.train.Example(features=tf.train.features(feature={
            'img_raw':tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
            'label':tf.train.Feature(int64_list=tf.train.Int64List(value=labels))
            }))
        writer.write(example.SerializeToString())
        num_pic+=1
        #序列化
        print("the number of picture:",num_pic)
    writer.close()


def generate_tfRecord():
    isExists=os.path.exists(data_path)
    if not isExists:
        os.makedirs(data_path)
        print("Created")
    else:
        print("Already Exists")

    write_tfRecord(tfRecord_train,image_train_path,label_train_path)
    write_tfRecord(tfRecord_test,image_test_path,label_test_path)


#解析文件
def read_tfRecord(tfRecord_path):
    #生成一个先入先出的队列
    filename_queue=tf.train.string_input_producer([tfRecord_path])
    reader=tf.TFRecordReader()
    _,serialized_example=reader.read(filename_queue)
    features=tf.parse_single_example(serialized_example,features={
        'label':tf.FixedLenFeature([10],tf.int64),
        'img_raw':tf.FixedLenFeature([],tf.string)
        })
    img=tf.decode_raw(features['img_raw'],tf.uint8)
    img.set_shape([784])
    img=tf.cast(img,tf.float32)*(1./255)
    label=tf.cast(features['label'],tf.float32)

    return img,lable

def get_tfrecord(num,isTrain=True):
    if isTrain:
        tfRecord_path=tfRecord_path
    else:
        tfRecord_path=tfRecord_test
    img,label=read_tfRecord(tfRecord_path)

    img_batch,label_batch=tf.train.shuffle_batch([img,label],batch_size=num,num_threads=2,capacity=1000,min_after_dequeue=700)

    return img_batch,label_batch

def main():
    generate_tfRecord()

if __name__=='__main__':
    main()




参考:人工智能实践:Tensorflow笔记

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容