SVM多分类之一对一与一对多

冒泡~今天是在实验室划水的最后一天啦!
明天就可以回我滴厦门啦~来更个新!

关于SVM的基本原理可参考之前写过的《探索SVM(支持向量机)之旅》那个时候主要是理论了解也就知道个大概(虽然现在也只是了解更多一点罢了)
之前更多把SVM定义在二分类问题上 今天着重记录的是SVM完成多分类。

SVM多分类

SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。构造多分类器可以采用直接法或者间接法。 但是若采取直接法即SVM直接在目标函数上进行修改的话,将多个分类面的参数求解合并到一个最优化问题上,显然难度太大,其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中。
所以重点讲一下间接法

间接法的分类:一对多、一对一

一对多(one-versus-rest,简称OVR SVMs)

训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样本就构造出了k个SVM。分类时将未知样本分类为具有最大分类函数值的那类。
举个例子:假如我有四类要划分(也就是有存在四个Label),他们是A、B、C、D。 于是我在抽取训练集的时候,分别选取四个训练集如下:
1.A所对应的向量作为正集,B,C,D所对应的向量作为负集;
2.B所对应的向量作为正集,A,C,D所对应的向量作为负集;
3.C所对应的向量作为正集,A,B,D所对应的向量作为负集;
4.D所对应的向量作为正集,A,B,C所对应的向量作为负集;
{可以概括为 自己一类为正集 其余类为负集,N个类别(N个label)有N个训练集}
使用这四个训练集分别进行训练,然后的得到四个训练结果文件。在测试的时候,把对应的测试向量分别利用这四个训练结果文件进行测试。
最后每个测试都有一个结果f1(x),f2(x),f3(x),f4(x)
于是最终的结果便是这四个值中最大的一个作为分类结果。
评价:
优点:训练k个分类器,个数较少,其分类速度相对较快。
缺点:①每个分类器的训练都是将全部的样本作为训练样本,这样在求解二次规划问题时,训练速度会随着训练样本的数量的增加而急剧减慢;
②同时由于负类样本的数据要远远大于正类样本的数据,从而出现了样本不对称的情况,且这种情况随着训练数据的增加而趋向严重。解决不对称的问题可以引入不同的惩罚因子,对样本点来说较少的正类采用较大的惩罚因子C;
③还有就是当有新的类别加进来时,需要对所有的模型进行重新训练。
{补充:有以下两个问题:
1.一个是一个样本可能同时属于几个类
那么看一下这个样本到各个超平面的距离,哪个远判给哪个
2.另一个是一个样本可能不属于任何一个
这样这个样本属于第N+1类,这个类的数目远大于N类之和,所以会造成数据偏斜问题}

一对一(one-versus-one,简称OVO SVMs或者pairwise)

其做法是在任意两类样本之间设计一个SVM,因此k个类别的样本就要设计k(k-1)/2个SVM
当对一个未知样本进行分类时,最后得票最多的类别即为该未知样本的类别。
Libsvm(一个好用的包)中的多类分类就是根据这个方法实现的
{关于libsvm的使用说明等可以参考(https://www.cnblogs.com/jingyesi/p/4237155.html)}
举个例子:
  假设有四类A,B,C,D四类。在训练的时候我选择A,B; A,C; A,D; B,C; B,D;C,D所对应的向量作为训练集(4X3/2=6),然后得到六个训练结果,在测试的时候,把对应的向量分别对六个结果进行测试,然后采取投票形式,最后得到一组结果。
投票是这样的:
  A=B=C=D=0;
  (A,B)-classifier 如果是A win,则A=A+1;otherwise,B=B+1;
  (A,C)-classifier 如果是A win,则A=A+1;otherwise, C=C+1;
  ...
  (C,D)-classifier 如果是C win,则C=C+1;otherwise,D=D+1;
  The decision is the Max(A,B,C,D)
(也就是通过看投票的分数来看分类情况)

评价:这种方法虽然好,但是当类别很多的时候,model的个数是n*(n-1)/2,代价还是相当大的。与一对多相比不会有样本不属于任何一类的情形出现,但是复杂度变大了。

参考资料(https://blog.csdn.net/weixin_42296976/article/details/81946047
https://blog.csdn.net/xfchen2/article/details/79621396

End~
一个半月的实验室划水要结束啦~
希望回家的小李 也会更新!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345