【连载】深度学习笔记8:利用Tensorflow搭建神经网络

      在笔记7中,笔者和大家一起入门了  Tensorflow 的基本语法,并举了一些实际的例子进行了说明,终于告别了使用 numpy 手动搭建的日子。所以我们将继续往下走,看看如何利用  Tensorflow 搭建神经网络模型。

      尽管对于初学者而言使用 Tensorflow 看起来并不那么习惯,需要各种步骤,但简单来说,Tensorflow 搭建模型实际就是两个过程:创建计算图和执行计算图。在 deeplearningai 课程中,NG和他的课程组给我们提供了 Signs Dataset (手势)数据集,其中训练集包括1080张64x64像素的手势图片,并给定了 6 种标注,测试集包括120张64x64的手势图片,我们需要对训练集构建神经网络模型然后对测试集给出预测。

      先来简单看一下数据集:

# Loading the datasetX_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()# Flatten the training and test imagesX_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).TX_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T# Normalize image vectorsX_train = X_train_flatten/255.X_test = X_test_flatten/255.# Convert training and test labels to one hot matricesY_train = convert_to_one_hot(Y_train_orig,6)Y_test = convert_to_one_hot(Y_test_orig,6)print("number of training examples = "+ str(X_train.shape[1]))print("number of test examples = "+ str(X_test.shape[1]))print("X_train shape: "+ str(X_train.shape))print("Y_train shape: "+ str(Y_train.shape))print("X_test shape: "+ str(X_test.shape))print("Y_test shape: "+ str(Y_test.shape))

      下面就根据 NG 给定的找个数据集利用 Tensorflow搭建神经网络模型。我们选择构建一个包含 2 个隐层的神经网络,网络结构大致如下:

LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX

正如我们之前利用

numpy手动搭建一样,搭建一个神经网络的主要步骤如下:

-定义网络结构

-初始化模型参数

-执行前向计算/计算当前损失/执行反向传播/权值更新

创建 placeholder

      根据 Tensorflow 的语法,我们首先创建输入X 和输出 Y 的占位符变量,这里需要注意 shape 参数的设置。

defcreate_placeholders(n_x, n_y):    X = tf.placeholder(tf.float32, shape=(n_x,None), name='X')    Y = tf.placeholder(tf.float32, shape=(n_y,None), name='Y')

returnX, Y

初始化模型参数

     其次就是初始化神经网络的模型参数,三层网络包括六个参数,这里我们采用Xavier初始化方法:

definitialize_parameters():     tf.set_random_seed(1)                     W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed =1))    b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())    W2 = tf.get_variable("W2", [12,25], initializer = tf.contrib.layers.xavier_initializer(seed =1))    b2 = tf.get_variable("b2", [12,1], initializer = tf.zeros_initializer())    W3 = tf.get_variable("W3", [6,12], initializer = tf.contrib.layers.xavier_initializer(seed =1))    b3 = tf.get_variable("b3", [6,1], initializer = tf.zeros_initializer())    parameters = {"W1": W1,

"b1": b1,

"W2": W2,

"b2": b2,

"W3": W3,

"b3": b3}

returnparameters

执行前向传播

defforward_propagation(X, parameters):"""

   Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX

   """W1 = parameters['W1']    b1 = parameters['b1']    W2 = parameters['W2']    b2 = parameters['b2']    W3 = parameters['W3']    b3 = parameters['b3']    Z1 = tf.add(tf.matmul(W1, X), b1)                        A1 = tf.nn.relu(Z1)                                   Z2 = tf.add(tf.matmul(W2, A1), b2)                    A2 = tf.nn.relu(Z2)                                      Z3 = tf.add(tf.matmul(W3, A2), b3)returnZ3

计算损失函数

      在 Tensorflow 中损失函数的计算要比手动搭建时方便很多,一行代码即可搞定:

defcompute_cost(Z3, Y):    logits = tf.transpose(Z3)    labels = tf.transpose(Y)    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits, labels = labels))

returncost

代码整合:执行反向传播和权值更新

      跟计算损失函数类似,Tensorflow 中执行反向传播的梯度优化非常简便,两行代码即可搞定,定义完整的神经网络模型如下:

defmodel(X_train, Y_train, X_test, Y_test, learning_rate =0.0001,          num_epochs =1500, minibatch_size =32, print_cost = True):    ops.reset_default_graph()                        tf.set_random_seed(1)                              seed =3(n_x, m) = X_train.shape                           n_y = Y_train.shape[0]                              costs = []# Create Placeholders of shape (n_x, n_y)X, Y = create_placeholders(n_x, n_y)# Initialize parametersparameters = initialize_parameters()# Forward propagation: Build the forward propagation in the tensorflow graphZ3 = forward_propagation(X, parameters)# Cost function: Add cost function to tensorflow graphcost = compute_cost(Z3, Y)# Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)# Initialize all the variablesinit = tf.global_variables_initializer()# Start the session to compute the tensorflow graphwithtf.Session()assess:# Run the initializationsess.run(init)# Do the training loopforepochinrange(num_epochs):            epoch_cost =0.num_minibatches = int(m / minibatch_size)             seed = seed +1minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)

forminibatchinminibatches:# Select a minibatch(minibatch_X, minibatch_Y) = minibatch                _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})                epoch_cost += minibatch_cost / num_minibatches# Print the cost every epochifprint_cost ==Trueandepoch %100==0:

print("Cost after epoch %i: %f"% (epoch, epoch_cost))

ifprint_cost ==Trueandepoch %5==0:                costs.append(epoch_cost)# plot the costplt.plot(np.squeeze(costs))        plt.ylabel('cost')        plt.xlabel('iterations (per tens)')        plt.title("Learning rate ="+ str(learning_rate))        plt.show()# lets save the parameters in a variableparameters = sess.run(parameters)

print("Parameters have been trained!")# Calculate the correct predictionscorrect_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))# Calculate accuracy on the test setaccuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))

print("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))

print("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))

returnparameters

      执行模型:

parameters = model(X_train, Y_train, X_test, Y_test)

      根据模型的训练误差和测试误差可以看到:模型整体效果虽然没有达到最佳,但基本也能达到预测效果。

总结

Tensorflow 语法中两个基本的对象类是 Tensor 和 Operator.

Tensorflow 执行计算的基本步骤为

创建计算图(张量、变量和占位符变量等)

创建会话

初始化会话

在计算图中执行会话

      可以看到的是,在 Tensorflow 中编写神经网络要比我们手动搭建要方便的多,这也正是深度学习框架存在的意义之一。功能强大的深度学习框架能够帮助我们快速的搭建起复杂的神经网络模型,在经历了手动搭建神经网络的思维训练过程之后,这对于我们来说就不再困难了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容