数据产品的KPI怎么定?

一、为什么需要KPI

对个人而言,有目标才有动力,清晰的目标是照亮前行之路的灯塔;对管理者来说,目标可以更加公平公正的评估同事绩效成绩,用客观结果代替主观评价。目标制定时要符合SMART原则:

S(Specific):目标必须是具体的,也就是要用具体的语言描述清楚想要达成的行为标准,例如“增强用户意识”,提高产品质量,提高响应速度,提供专业服务这些可能都可以属于增强用户意识的范畴,“增强用户意识”就会出现指向不明,不知如何着手的情况

M(Measurable):目标是可衡量的,即要明确衡量目标是否达成的标准,最好是有可量化的指标,例如“提升用户产品使用时长”,现状是多少,提升至多少才算完成目标呢?

A(Attainable)目标要是可以达到的,无法实现的目标只是画大饼而已,而且一直无法实现会影响个人及团队的积极性

R(Relevant)目标和业务方向或其他目标有相关性,与主营业务无关的目标只会占用资源

T(Time-bound)目标要有明确的完成时间,否则只会无限延期

有符合SMART原则的目标很重要,有可以量化衡量目标完成的情况的KPI(关键绩效指标)更重要。

二、数据产品KPI的困惑

C端产品或销售部门的KPI比较容易确定,比如转化率提升至XX,8月销售额达到XX千万等,指标确定后基于历史业务增长情况算一下高、中、低标的增幅,或者基于历史数据用时间序列的预测模型预测一把,下个月的KPI就出来了。但对于B端产品,尤其是数据产品,一般服务公司内部(商业化的数据产品服务于外部企业的员工),如何确定产品的KPI呢?

看用户数量?例如日活数为5精准营销平台(DMP)和日活500的OA产品相比,DMP平台产品表现就是很糟糕吗?当然未必,因为DMP核心用户群体相对有限,主要是用户运营,一个公司的运营人员的人数可能就是那么几个,这些人可能每天高频使用产品,进行数百万或千万的用户触达,带来十万级的新客增长或老客召回。而OA平台是员工日常办公场景下的一个门户入口而已。

看版本迭代速度和需求数量?每周都迭代的产品表现未必好,因为也可能是产品规划的时候方案设计缺陷后期返工,或者用户需求调研、挖掘不透彻,上线推广应用后,其他用户提出新的诉求。

显然,数据产品的KPI不能简单从UV和需求完成数量来确定,要把用户使用情况和产品价值两个维度综合考虑,数据产品的价值可以分为:决策支撑、降本提效、数据赋能,

决策支撑:一般是可视化报表、数据分析类产品,通过数据产品帮助业务发现经营问题,调整业务策略

降本提效:工具类数据产品,提升数据获取&分析效率,节省开发时间&人力成本

数据赋能:个性化推荐、AI产品、CDP/DMP平台等,通过数据产品,促进用户转化,拉升业务增长

三、数据产品KPI案例

UGC类型的产品:主要是工具类,用户基于平台进行数据加工任务、数据可视化报表配置、或者SQL查询,以DMP精准平台为例:

用户使用情况:DAU、MAU、累计用户数、访问频次、使用时长、活跃用户占比(访问用户数/开通权限用户)、用户满意度(问卷调研制定量化指标)

内容生产&消费情况:人群数、场景数、标签数、触达用户数

人效提升:业务自助配置VS依赖开发变现,单营销场景时长从XX天降低至XX小时,节省人力成本XX人/日,周营销频次提升XX

效果提升:基于平台算法模型或系统推荐精细化人群VS业务经验或粗放式版本,这里不能简单用订单数、转化率指标来衡量,因为给用户发Apppush,即使不使用平台,也可以产生订单和转化,而且用户是否点击会受到push文案等多种因素影响。

系统性能:数据处理效率、数据时效性、接口QPS、接口响应时长

PGC类型的产品:平台生产内容,业务直接使用或者调用,如定制化主题报表、交互式数据查询&分析系统、数据服务接口等。以数据可视化平台为例:

用户使用情况:DAU、MAU、累计用户数、访问频次、使用时长、活跃用户占比(访问用户数/开通权限用户)、用户满意度(问卷调研制定量化指标)

平台稳定性:系统性能(页面加载时长2s内)、故障时长、故障频率、数据异常次数

效果提升:分析效率提升(交互式分析、智能分析时长VSSQL取数或离线excel分析时长)、临时取数频次变化(定制化报表上线一般为了解决常态化的数据获取需求,一个报表上线,相应的临时取数会有所减少,否则只能说明固化报表并未充分挖掘和覆盖业务需求)

业务价值:问题发现占比(数据系统监控预警发现的异常数/系统发现+人工发现)

总结

制定可量化的数据产品KPI,不仅是产品迭代的方向指引,在工作总结和汇报乃至求职简历中,关于工作的价值也会更有说服力。

讨论:关于数据产品KPI,你还有哪些思路呢?欢迎在留言区交流。

数据干饭人

大数据产品知识分享,数据中台产品从0-1实战经验

公众号

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容

  • 看过很多关于如何构建用户画像的文章,大多聚焦于用户画像对精准营销、精细化运营的价值、如何建设标签体系的某一或某几个...
    e73fe7dcce95阅读 1,869评论 2 36
  • 1.概述 2018将尽,抽时间整理一下近几年的数据产品体系。既是一个总结,也是对知识的再次消化吸收,同时也发现...
    土崖阅读 476评论 0 0
  • 灵性产品/我的三年产品路 前排提醒: 一篇很长的文章,大概4.5万字,建议收藏阅读 前言 从毕业到现在,成为PM已...
    SkySOON阅读 6,199评论 14 146
  • 16宿命:用概率思维提高你的胜算 以前的我是风险厌恶者,不喜欢去冒险,但是人生放弃了冒险,也就放弃了无数的可能。 ...
    yichen大刀阅读 6,032评论 0 4
  • 公元:2019年11月28日19时42分农历:二零一九年 十一月 初三日 戌时干支:己亥乙亥己巳甲戌当月节气:立冬...
    石放阅读 6,870评论 0 2