以一篇文章为例,总结单细胞文章分析框架

作者:ahworld
链接以《致癌物或病毒介导的HNSCC免疫图谱》为例总结单细胞文章分析框架
来源:微信公众号-seqyuan
著作权归作者所有,任何形式的转载都请联系作者。

上一篇我们分享的《一文了解单细胞基因调控网络(GRN)》中有提过:

scRNA-seq数据的表达矩阵之后大多数后续分析的重点是: 确定组织或癌症中细胞亚群的类型或状态,或研究动态变化过程,例如细胞分化、细胞周期或刺激反应。

用于解决上述问题的计算方法主要包括以下两方面:

  • 使用聚类算法将细胞分为不同的细胞类型或状态
  • 通过轨迹推断方法沿伪时间轴对细胞进行排序

除了以上两点之外还可以通过分析配体(表面或分泌的)和受体表达来探究推测细胞外在相互作用--细胞通讯

纵然大多文章的亚群聚类分析选择了R包Seurat,发育轨迹推断分析选择了Monocle2,但是我们在《单细胞轨迹分析知多少--拟时间分析比较》这篇文章中也介绍过Monocle2并非做轨迹分析的万金油。要发高分文章有一个不错的选择是:一个吸引人的生物学问题+自己开发的软件算法得到新的发现

Cillo A R, Kürten C H L, Tabib T, et al. Immune Landscape of Viral-and Carcinogen-Driven Head and Neck Cancer[J]. Immunity, 2020.

例如2020年发表在Immunity上的这篇文章,在文章DISCUSSION的第一段结尾写的这样:

在这项研究中,我们使用了新的生物信息学工具和方法HNSCC致癌物介导的(HPV-)或病毒介导的(HPV +)致癌作用的TME患者中所有CD45+免疫细胞进行了深入分析。 一般而言,我们的实验和分析方法可用于分析样本组之间细胞组成和转录状态不同的任何异质细胞群体。

瞧瞧,是不是有内味儿了,高分文章的标配。

上面提到的新的生物信息学工具和方法就是以下几个:

  • DRAGON:用于scRNA-seq数据的聚类
  • singleseqgset:用于基因集富集分析,分群之后可以用它结合marker基因做亚群的功能鉴定等
  • celltalker:从scRNAseq数据预测配体和受体相互作用

除此之外,文章中用于轨迹推断的方法是不同于一般算法的Diffusion map,这种算法对于大数据集的项目的处理相较于Monocle2要好太多。

Diffusion map算法做轨迹推断分析在2016年发表的destinyDPT两篇文章有原理介绍,后续我会做一个使用教程。linux下非root账号通过singularity运行dyno的坑还没有填上 ┗( T﹏T )┛

既然说到了celltalker,我们就以这篇文章为例看一看scRNA-seq数据分析框架

样品情况

样品情况

文章分析框架:这块本想做文字介绍,发现做成鱼骨头可能更清晰一些,具体的分析内容就看后文的文章详细解读章节吧。有了这个图在看文章时便会时刻清楚文中分析内容在整体框架中的的定位,不犯迷糊。
文章分析框架

想看的更清楚可以从以下网址下载

百度云: https://pan.baidu.com/s/1ZttS8Ezx_ruLswWURpkTyw
密码: hj3c

文章全篇围绕病毒和变异引起的HNSCC,这一发生在相似解剖位置的两种不同癌症病因的免疫状况差异展开。具体的解析请看后面的文章详细解读。

文章1点细节需要改正:

  • Figure S2B,中间图的ylabel应该为FItSNE_2
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容