前提
本文来源于https://pytorch.org/tutorials/beginner/saving_loading_models.html#
SAVING AND LOADING MODELS
当提到保存和加载模型时,有三个核心功能需要熟悉:
1.torch.save:将序列化的对象保存到disk。这个函数使用Python的pickle实用程序进行序列化。使用这个函数可以保存各种对象的模型、张量和字典。
2.torch.load:使用pickle unpickle工具将pickle的对象文件反序列化为内存。
3.torch.nn.Module.load_state_dict:使用反序列化状态字典加载model’s参数字典。
一:WHAT IS A STATE_DICT
在PyTorch中,torch.nn.Module的可学习参数(即权重和偏差),模块模型包含在model's参数中(通过model.parameters()访问)。state_dict是个简单的Python dictionary对象,它将每个层映射到它的参数张量。
注意,只有具有可学习参数的层(卷积层、线性层等)才有model's state_dict中的条目。优化器对象(connector .optim)也有一个state_dict,其中包含关于优化器状态以及所使用的超参数的信息。
Example:
import torch
import torch.nn as nn
import torch.nn.functional as F
# Define model
class TheModelClass(nn.Module):
def __init__(self):
super(TheModelClass,self).__init__()
self.conv1=nn.Conv2d(3,6,5)
self.pool=nn.MaxPool2d(2,2)
self.conv2=nn.Conv2d(6,16,5)
self.fc1=nn.Linear(16*5*5,120)
self.fc2=nn.Linear(120,84)
self.fc3=nn.Linear(84,10)
def farward(self,x):
x=self.pool(F.relu(self.conv1(x)))
x=self.pool(F.relu(self.conv2(x)))
x=x.view(-1,16*5*5)
x=F.relu(self.fc1(x))
x=F.relu(self.fc2(x))
x=self.fc3(x)
return x
# Initialize model
model=TheModelClass()
# Initialize optimizer
optimizer=torch.optim.SGD(model.parameters(),lr=1e-4,momentum=0.9)
print("Model's state_dict:")
# Print model's state_dict
for param_tensor in model.state_dict():
print(param_tensor,"\t",model.state_dict()[param_tensor].size())
print("optimizer's state_dict:")
# Print optimizer's state_dict
for var_name in optimizer.state_dict():
print(var_name,"\t",optimizer.state_dict()[var_name])
Output:
Model's state_dict:
conv1.weight torch.Size([6, 3, 5, 5])
conv1.bias torch.Size([6])
conv2.weight torch.Size([16, 6, 5, 5])
conv2.bias torch.Size([16])
fc1.weight torch.Size([120, 400])
fc1.bias torch.Size([120])
fc2.weight torch.Size([84, 120])
fc2.bias torch.Size([84])
fc3.weight torch.Size([10, 84])
fc3.bias torch.Size([10])
optimizer's state_dict:
state {}
param_groups [{'lr': 0.0001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [1310469552240, 1310469552384, 1310469552456, 1310469552528, 1310469552600, 1310469552672, 1310469552744, 1310469552816, 1310469552888, 1310469552960]}]
二:SAVING & LOADING MODEL FOR INFERENCE
Save/Load state_dict (Recommended)
-
Save:
torch.save(model.state_dict(), PATH)
在保存模型进行推理时,只需要保存训练过的模型的学习参数即可。一个常见的PyTorch约定是使用.pt或.pth文件扩展名保存模型。
-
Load:
model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.eval()
记住,您必须调用model.eval(),以便在运行推断之前将dropout和batch规范化层设置为评估模式。如果不这样做,将会产生不一致的推断结果。
Note:
注意,load_state_dict()函数接受一个dictionary对象,而不是保存对象的路径。这意味着您必须在将保存的state_dict传至load_state_dict()函数之前反序列化它。
Save/Load Entire Model
-
Save:
torch.save(model, PATH)
-
Load:
# Model class must be defined somewhere model = torch.load(PATH) model.eval()
三:
Save:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
...
}, PATH)
</pre>
Load:
model = TheModelClass(*args, **kwargs)
optimizer = TheOptimizerClass(*args, **kwargs)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval()
# - or -
model.train()</pre>
在保存用于推理或恢复训练的通用检查点时,必须保存模型的state_dict。另外,保存优化器的state_dict也是很重要的,因为它包含缓冲区和参数,这些缓冲区和参数是在模型训练时更新的。要保存多个组件,请将它们组织在字典中,并使用torch.save()序列化字典。一个常见的PyTorch约定是使用.tar文件扩展名保存这些检查点。
四:SAVING & LOADING MODEL ACROSS DEVICES
Save on GPU, Load on CPU
-
Save:
torch.save(model.state_dict(), PATH)
-
Load:
device = torch.device('cpu') model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH, map_location=device))
Save on GPU, Load on GPU
-
Save:
torch.save(model.state_dict(), PATH)
-
Load:
device = torch.device("cuda") model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.to(device) # Make sure to call input = input.to(device) on any input tensors that you feed to the model
Save on CPU, Load on GPU
-
Save:
torch.save(model.state_dict(), PATH)
-
Load:
device = torch.device("cuda") model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH, map_location="cuda:0")) # Choose whatever GPU device number you want model.to(device) # Make sure to call input = input.to(device) on any input tensors that you feed to the model
Saving torch.nn.DataParallel Models
-
Save:
torch.save(model.module.state_dict(), PATH)
-
Load:
# Load to whatever device you want
torch.nn.DataParallel是支持并行GPU使用的模型包装器。为了节省DataParallel模型属性,保存model.module.state_dict()。通过这种方式,您可以灵活地以任何方式加载模型以加载任何设备。