RabbitMQ最后一天

一、RabbitMQ如何保证消息不丢失?

这是面试时最喜欢问的问题,其实这是个所有MQ的一个共性的问题,大致的解决思路也是差不多的,但是针对不同的MQ产品会有不同的解决方案。而RabbitMQ设计之处就是针对企业内部系统之间进行调用设计的,所以他的消息可靠性是比较高的。

注意:千万不要再回答 手动确认了。

1.哪些环节会有丢消息的可能?

我们考虑一个通用的MQ场景:

其中,1,2,4三个场景都是跨网络的,而跨网络就肯定会有丢消息的可能。

然后关于3这个环节,通常MQ存盘时都会先写入操作系统的缓存page cache中,然后再由操作系统异步的将消息写入硬盘。这个中间有个时间差,就可能会造成消息丢失。如果服务挂了,缓存中还没有来得及写入硬盘的消息就会丢失。这也是任何用户态的应用程序无法避免的。

对于任何MQ产品,都应该从这四个方面来考虑数据的安全性。那我们看看用RabbitMQ时要如何解决这个问题。

2.RabbitMQ消息零丢失方案

1)生产者保证消息正确发送到RabbitMQ

对于单个数据,可以使用生产者确认机制。通过多次确认的方式,保证生产者的消息能够正确的发送到RabbitMQ中。

RabbitMQ的生产者确认机制分为同步确认和异步确认。同步确认主要是通过在生产者端使用Channel.waitForConfirmsOrDie()指定一个等待确认的完成时间。异步确认机制则是通过channel.addConfirmListener(ConfirmCallback var1, ConfirmCallback var2)在生产者端注入两个回调确认函数。第一个函数是在生产者发送消息时调用,第二个函数则是生产者收到Broker的消息确认请求时调用。两个函数需要通过sequenceNumber自行完成消息的前后对应。sequenceNumber的生成方式需要通过channel的序列获取。int sequenceNumber = channel.getNextPublishSeqNo();

在RabbitMQ中,另外还有一种手动事务的方式,可以保证消息正确发送。

手动事务机制主要有几个关键的方法: channel.txSelect() 开启事务; channel.txCommit() 提交事务; channel.txRollback() 回滚事务; 用这几个方法来进行事务管理。但是这种方式需要手动控制事务逻辑,并且手动事务会对channel产生阻塞,造成吞吐量下降。

2)RabbitMQ消息存盘不丢消息

这个在RabbitMQ中比较好处理,对于Classic经典队列,直接将队列声明成为持久化队列即可。而新增的Quorum队列和Stream队列,都是明显的持久化队列,能更好的保证服务端消息不会丢失。

3)RabbitMQ 主从消息同步时不丢消息

这涉及到RabbitMQ的集群架构。首先他的普通集群模式,消息是分散存储的,不会主动进行消息同步了,是有可能丢失消息的。而镜像模式集群,数据会主动在集群各个节点当中同步,这时丢失消息的概率不会太高。

另外,启用Federation联邦机制,给包含重要消息的队列建立一个远端备份,也是一个不错的选择。

4)RabbitMQ消费者不丢失消息

RabbitMQ在消费消息时可以指定是自动应答,还是手动应答。如果是自动应答模式,消费者会在完成业务处理后自动进行应答,而如果消费者的业务逻辑抛出异常,RabbitMQ会将消息进行重试,这样是不会丢失消息的,但是有可能会造成消息一直重复消费。

将RabbitMQ的应答模式设定为手动应答可以提高消息消费的可靠性。

另外这个应答模式在SpringBoot集成案例中,也可以在配置文件中通过属性spring.rabbitmq.listener.simple.acknowledge-mode 进行指定。可以设定为 AUTO 自动应答; MANUAL 手动应答;NONE 不应答; 其中这个NONE不应答,就是不启动应答机制,RabbitMQ只管往消费者推送消息后,就不再重复推送消息了,相当于RocketMQ的sendoneway, 这样效率更高,但是显然会有丢消息的可能。

最后,任何用户态的应用程序都无法保证绝对的数据安全,所以,备份与恢复的方案也需要考虑到。

二、如何保证消息幂等?

RabbitMQ的自动重试功能:当消费者消费消息处理业务逻辑时,如果抛出异常,或者不向RabbitMQ返回响应,默认情况下,RabbitMQ会无限次数的重复进行消息消费。

处理幂等问题,首先要设定RabbitMQ的重试次数。在SpringBoot集成RabbitMQ时,可以在配置文件中指定spring.rabbitmq.listener.simple.retry开头的一系列属性,来制定重试策略。

然后,需要在业务上处理幂等问题

处理幂等问题的关键是要给每个消息一个唯一的标识。

在SpringBoot框架集成RabbitMQ后,可以给每个消息指定一个全局唯一的MessageID,在消费者端针对MessageID做幂等性判断。关键代码:

要注意下这里用的message要是org.springframework.amqp.core.Message 

在原生API当中,也是支持MessageId的。当然,在实际工作中,最好还是能够添加一个具有业务意义的数据作为唯一键会更好,这样能更好的防止重复消费问题对业务的影响。比如,针对订单消息,那就用订单ID来做唯一键。在RabbitMQ中,消息的头部就是一个很好的携带数据的地方。

三、如何保证消息的顺序?

某些场景下,需要保证消息的消费顺序,例如一个下单过程,需要先完成扣款,然后扣减库存,然后通知快递发货,这个顺序不能乱。如果每个步骤都通过消息进行异步通知的话,这一组消息就必须保证他们的消费顺序是一致的。

在RabbitMQ当中,针对消息顺序的设计其实是比较弱的。唯一比较好的策略就是 单队列+单消息推送。即一组有序消息,只发到一个队列中,利用队列的FIFO特性保证消息在队列内顺序不会乱。但是,显然,这是以极度消耗性能作为代价的,在实际适应过程中,应该尽量避免这种场景。

然后在消费者进行消费时,保证只有一个消费者,同时指定prefetch属性为1,即每次RabbitMQ都只往客户端推送一个消息。像这样:

而在多队列情况下,如何保证消息的顺序性,目前使用RabbitMQ的话,还没有比较好的解决方案。在使用时,应该尽量避免这种情况。

四、关于RabbitMQ的数据堆积问题

RabbitMQ一直以来都有一个缺点,就是对于消息堆积问题的处理不好。当RabbitMQ中有大量消息堆积时,整体性能会严重下降。而目前新推出的Quorum队列以及Stream队列,目的就在于解决这个核心问题。但是这两种队列的稳定性和周边生态都还不够完善,因此,在使用RabbitMQ时,还是要非常注意消息堆积的问题。尽量让消息的消费速度和生产速度保持一致。

而如果确实出现了消息堆积比较严重的场景,就需要从数据流转的各个环节综合考虑,设计适合的解决方案。

1)首先在消息生产者端:

对于生产者端,最明显的方式自然是降低消息生产的速度。但是,生产者端产生消息的速度通常是跟业务息息相关的,一般情况下不太好直接优化。但是可以选择尽量多采用批量消息的方式,降低IO频率。

2)然后在RabbitMQ服务端:

从前面的分享中也能看出,RabbitMQ本身其实也在着力于提高服务端的消息堆积能力。对于消息堆积严重的队列,可以预先添加懒加载机制,或者创建Sharding分片队列,这些措施都有助于优化服务端的消息堆积能力。另外,尝试使用Stream队列,也能很好的提高服务端的消息堆积能力。

3)接下来在消息消费者端:

要提升消费速度最直接的方式,就是增加消费者数量了。尤其当消费端的服务出现问题,已经有大量消息堆积时。这时,可以尽量多的申请机器,部署消费端应用,争取在最短的时间内消费掉积压的消息。但是这种方式需要注意对其他组件的性能压力。

对于单个消费者端,可以通过配置提升消费者端的吞吐量。例如:

灵活配置这几个参数,能够在一定程度上调整每个消费者实例的吞吐量,减少消息堆积数量。

当确实遇到紧急状况,来不及调整消费者端时,可以紧急上线一个消费者组,专门用来将消息快速转录。保存到数据库或者Redis,然后再慢慢进行处理。

五、RabbitMQ的备份与恢复

文档地址: https://www.rabbitmq.com/backup.html

RabbitMQ有一个data目录会保存分配到该节点上的所有消息。我们的实验环境中,默认是在/var/lib/rabbitmq/mnesia目录下 这个目录里面的备份分为两个部分,一个是元数据(定义结构的数据),一个是消息存储目录。

对于元数据,可以在Web管理页面通过json文件直接导出或导入。

而对于消息,可以手动进行备份恢复。

其实对于消息,由于MQ的特性,是不建议进行备份恢复的。而RabbitMQ如果要进行数据备份恢复,也非常简单。

1)首先,要保证要恢复的RabbitMQ中已经有了全部的元数据,这个可以通过上一步的json文件来恢复。

2)然后,备份过程必须要先停止应用。如果是针对镜像集群,还需要把整个集群全部停止。

3)最后,在RabbitMQ的数据目录中,有按virtual hosts组织的文件夹。你只需要按照虚拟主机,将整个文件夹复制到新的服务中即可。持久化消息和非持久化消息都会一起备份。 我们实验环境的默认目录是/var/lib/rabbitmq/mnesia/rabbit@worker2/msg_stores/vhosts

六、RabbitMQ的性能监控

关于RabbitMQ的性能监控,在管理控制台中提供了非常丰富的展示。例如在下面这个简单的集群节点图中,就监控了非常多系统的关键资源。

还包括消息的生产消费频率、关键组件使用情况等等非常多的信息,都可以从这个管理控制台上展现出来。但是,对于构建一个自动化的性能监控系统来说,这个管理页面就不太够用了。为此,RabbitMQ也提供了一系列的HTTP接口,通过这些接口可以非常全面的使用并管理RabbitMQ的各种功能。

这些HTTP的接口不需要专门去查手册,在部署的管理控制台页面下方已经集成了详细的文档,我们只需要打开HTTP API的页面就能看到。

比如最常用的 http://[server:port]/api/overview 接口,会列出非常多的信息,包含系统的资源使用情况。通过这个接口,就可以很好的对接Promethus、Grafana等工具,构建更灵活的监控告警体系。

可以看到,这里面的接口相当丰富,不光可以通过GET请求获取各种消息,还可以通过其他类型的HTTP请求来管理RabbitMQ中的各种资源,因此在实际使用时,还需要考虑这些接口的安全性。

七、搭建HAProxy,实现高可用集群

我们之前搭建的镜像集群,已经具备了集群的功能,请求发送到任何一个节点上,数据都是在集群内共享的。但是,在企业使用时,通常还会选择在集群基础上增加负载均衡的能力。即希望将客户端的请求能够尽量均匀的分配到集群中各个节点上,这样可以让集群的压力得到平衡。

实现负载均衡的方式有很多,HAProxy就是其中一种可选方案。HAProxy是一个免费、快速并且可靠的解决方案,有很多大型互联网公司都在使用。通过HAProxy,应用可以直连一个单一的IP地址,然后HAProxy会将这个IP地址的TCP请求进行转发,并在转发过程中实现负载均衡。

很多有实力的大企业会采用F5等其他的一些负载均衡工具。

安装步骤如下:

1、安装HAProxy

2、配置HAProxy

修改haproxy.cfg文件。下面是参考配置。注意将节点的IP地址和端口换成你自己的环境。

八、总结

基于MQ的事件驱动机制,给庞大的互联网应用带来了不一样的方向。MQ的异步、解耦、削峰三大功能特点在很多业务场景下都能带来极大的性能提升,在日常工作过程中,应该尝试总结这些设计的思想。

虽然MQ的功能,说起来比较简单,但是随着MQ的应用逐渐深化,所需要解决的问题也更深入。对各种细化问题的挖掘程度,很大程度上决定了开发团队能不能真正Hold得住MQ产品。通常面向互联网的应用场景,更加注重MQ的吞吐量,需要将消息尽快的保存下来,再供后端慢慢消费。而针对企业内部的应用场景,更加注重MQ的数据安全性,在复杂多变的业务场景下,每一个消息都需要有更加严格的安全保障。而在当今互联网,Kafka是第一个场景的不二代表,但是他会丢失消息的特性,让kafka的使用场景比较局限。RabbitMQ作为一个老牌产品,是第二个场景最有力的代表。当然,随着互联网应用不断成熟,也不断有其他更全能的产品冒出来,比如阿里的RocketMQ以及雅虎的Pulsar。但是不管未来MQ领域会是什么样子,RabbitMQ依然是目前企业级最为经典也最为重要的一个产品。他的功能最为全面,周边生态也非常成熟,并且RabbitMQ有庞大的Spring社区支持,本身也在吸收其他产品的各种优点,持续进化,所以未来RabbitMQ的重要性也会更加凸显。

从RabbitMQ的安装、应用、扩展等多个方面,综合介绍了RabbitMQ的各种常用使用方法以及业务场景。希望能够带你打开一扇大门,更真实,更深入的理解MQ这个工具。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容