L1,L2正则化本质

(1)什么是正则化

  • 1、从结构风险化角度,解释什么是正则化

经验风险其实就是样本本身带来的误差。
结构风险就是学习器带来的误差。
当假设空间、损失函数、训练集确定的情况下,经验风险可以确定;
如果样本量足够大,经验风险趋近于期望损失,经验风险最小化可以保证有很好的学习效果;
但是如果样本量小,经验风险最小化的效果未必好,容易造成过拟合,因此结构最小化是为了防止过拟合而提出来的策略。
正则化是结构风险最小化策略的实现。
正则化符合奥卡姆剃刀原理:在所有可能选择的模型,能够很好的解释已知数据并且十分简单才是最好的模型

  • 2、从贝叶斯估计角度,解释什么是正则化

从贝叶斯估计的角度来看,正则化对应于模型的先验概率,可以假设复杂的模型有较大的先验概率,简单的模型有较小的先验概率。
有正则化就是最大后验概率的参数估计方法
无正则化就是最大似然概率的参数估计方法


一、先了解几个概念

先验概率,后验概率,似然概率,条件概率,贝叶斯,最大似然
似然函数,最大似然估计
f(x|θ)表示的就是在给定参数theta的情况下,x出现的可能性多大。L(θ|x)表示的是在给定样本x的时候,哪个参数theta使得x出现的可能性多大。

二、最大似然估计和最大后验概率

最大似然估计和最大后验概率估计的区别
相信读完上文,MLE和MAP的区别应该是很清楚的了。MAP就是多个作为因子的先验概率P(θ)。或者,也可以反过来,认为MLE是把先验概率P(θ)认为等于1,即认为θ是均匀分布。
详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

(2)作用

L1正则化产生稀疏的权值, L2正则化产生平滑的权值
L1也可以作为特征选择的一种

(3)为什么产生稀疏值或平滑作用

可以从两个角度解释:贝叶斯角度和梯度下降角度

  • 一:贝叶斯角度


常见的L1/L2正则,分别等价于引入先验信息:参数符合拉普拉斯分布/高斯分布。没有加,就是符合均匀分布

  • 二:梯度下降角度

梯度下降
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容