AQS

AbstractQueuedSynchronizer源码

AbstractQueuedSynchronizer(AQS)内部结构

AQS是ReentrantLock、ReentrantReadWriteLock、CountDownLatch等经常使用锁的父类。AQS既然是父类,一些接口是需要实现类自己去实现的例如tryAcquire,tryRelase;AQS提供共享锁和排它锁(独占锁)。

AQS内部有个Node,申请锁的线程会封装为一个Node,申请一个锁的所有线程会组成Node链表。

  1. 链表是双链表结构

  2. 非租塞,在并发下插入和移除操作不会阻塞(自旋,CAS)

  3. FIFO

AQS内还维护了state(内部同步状态)、线程的阻塞和解除操作。

所有对state操作是原子性的

AQS内部使用LockSuppert.park、unPark操作。内部会在每个Thread设置一个本地状态,让线程轮训本地状态,而不是像普通的锁,大家都是竞争同一个锁,造成更大的浪费。

Node的双链表结构图

Node结构.png

Node的属性:

1.prev 指向节点上一个节点,如果没有则为null

2.next 指向节点下一个节点,为了查找最后一个节点方便,避免单链表情况下必须从head开始找,如果没有则为null

3.waitStatus 线程状态,CLH结构中使用前一节点一个属性标识当前节点状态,方便实现取消和超时功能。

​ CANCELLED =1,被取消或超时

​ SIGNAL =-1 ,只是当前节点的后续节点被阻塞了,需要unparking

​ CONDITION = -2,当前节点在conditon队列中

​ PROPAGATE = -3,共享锁使用,线性广播唤醒线程。

默认 0,初始状态

4.nextWaiter:标识condtion队列的后续节点,此时prev,next不用,而且节点waitStauts是CONDITION.

5.thread 对应的线程

源代码排它锁(ReentrantLock)

ReentrantLock使用方式 1):

ReentrantLock.lock

ReentrantLock.unlock

aqs流程

ReentrantLock lock过程

ReentrantLock内部有公平锁FairSync和非公平锁NonfairSync,先看公平锁

ReentrantLock:

 public void lock() {
 sync.lock();
 }
//AbstractQueuedSynchronizer:
 public final void acquire(int arg) {
 if (!tryAcquire(arg) &&
 acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) //如果没有获取到锁 就创建Node节点 封装当前线程,成功后并中断当前线程
 selfInterrupt();
 }

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
 int ws = pred.waitStatus;
 if (ws == Node.SIGNAL) // 需要unpark
 /*
 * This node has already set status asking a release
 * to signal it, so it can safely park.
 */
 return true;
 if (ws > 0) {
 /*
 * Predecessor was cancelled. Skip over predecessors and
 * indicate retry.
 */
 do {
 node.prev = pred = pred.prev;
 } while (pred.waitStatus > 0); //大于1的都是取消的,要找到小与0的
 pred.next = node;
 } else {
 /*
 * waitStatus must be 0 or PROPAGATE.  Indicate that we
 * need a signal, but don't park yet.  Caller will need to
 * retry to make sure it cannot acquire before parking.
 */
 compareAndSetWaitStatus(pred, ws, Node.SIGNAL);  // 需要前驱节点(waitStatus)unpark,也就说告诉前节点,你的next节点需要被通知运行
 }
 return false;
 }
 final boolean acquireQueued(final Node node, int arg) {
 boolean failed = true;
 try {
 boolean interrupted = false;
 for (;;) {
 final Node p = node.predecessor(); //取出前节点
 if (p == head && tryAcquire(arg)) {//如果前节点是head,则设置改节点为头结点
 setHead(node);
 p.next = null; // help GC
 failed = false;
 return interrupted; //并不中断
 }
 if (shouldParkAfterFailedAcquire(p, node) &&
 parkAndCheckInterrupt()) //这里会有LockSupport操作,
 //LockSupport.park unPark,这里会有一个许可。park在获取不到许可就会组阻塞,
 interrupted = true;
 }
 } finally {
 if (failed)  //失败就会取消线程 
 cancelAcquire(node); //取消后还要调整队列
 }
 }
/**
 * Creates and enqueues node for current thread and given mode.
 *
 * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
 * @return the new node
 */
 private Node addWaiter(Node mode) {
 Node node = new Node(Thread.currentThread(), mode); //新建节点 并入队尾 参数是模式
 // Try the fast path of enq; backup to full enq on failure
 Node pred = tail;
 if (pred != null) {
 node.prev = pred;
 if (compareAndSetTail(pred, node)) {  //如果有并发,这里会失败,进入enq
 pred.next = node;
 return node;
 }
 }
 enq(node);
 return node;
 }
 /**
 * Inserts node into queue, initializing if necessary. See picture above.
 * @param node the node to insert
 * @return node's predecessor
 */
 private Node enq(final Node node) {
 for (;;) {    //CAS 操作,自旋模式 直到设置成功哦
 Node t = tail;
 if (t == null) { // Must initialize
 if (compareAndSetHead(new Node()))
 tail = head;
 } else {
 node.prev = t;
 if (compareAndSetTail(t, node)) {
 t.next = node;
 return t;
 }
 }
 }
 }
//FairSync:
 final void lock() {
 acquire(1); //基类AQS方法
 }
 /**
 * Fair version of tryAcquire.  Don't grant access unless
 * recursive call or no waiters or is first.
 */
 protected final boolean tryAcquire(int acquires) {
 final Thread current = Thread.currentThread();
 int c = getState();
 if (c == 0) { //这里是判断是否是空链表或者当前线程是链表头部
 if (!hasQueuedPredecessors() && //判断是否有pre节点 不包括head
 compareAndSetState(0, acquires)) {
 setExclusiveOwnerThread(current);//设置为当前线程
 return true;
 }
 }
 else if (current == getExclusiveOwnerThread()) { //重入
 int nextc = c + acquires;
 if (nextc < 0)
 throw new Error("Maximum lock count exceeded");
 setState(nextc);
 return true;
 }
 return false; //没有获取到返回false
 }

ReentrantLock unlock过程

//ReentrantLock:
public void unlock() {
 sync.release(1);
 }
//AQS:
public final boolean release(int arg) {
 if (tryRelease(arg)) {
 Node h = head;
 if (h != null && h.waitStatus != 0) //如果不是head不为空,切不为0,则要唤醒后续节点
 unparkSuccessor(h);
 return true;
 }
 return false;
 }
//sync:
 private void unparkSuccessor(Node node) {
 /*
 * If status is negative (i.e., possibly needing signal) try
 * to clear in anticipation of signalling.  It is OK if this
 * fails or if status is changed by waiting thread.
 */
 int ws = node.waitStatus;
 if (ws < 0)
 compareAndSetWaitStatus(node, ws, 0);
​
 /*
 * Thread to unpark is held in successor, which is normally
 * just the next node.  But if cancelled or apparently null,
 * traverse backwards from tail to find the actual
 * non-cancelled successor.
 */
 Node s = node.next;
 if (s == null || s.waitStatus > 0) {  //找到小于0的可执行的
 s = null;
 for (Node t = tail; t != null && t != node; t = t.prev) 
 if (t.waitStatus <= 0)
 s = t;
 }
 if (s != null)
 LockSupport.unpark(s.thread); //释放
 }
​
 protected final boolean tryRelease(int releases) {
 int c = getState() - releases; //同步参数 -1
 if (Thread.currentThread() != getExclusiveOwnerThread()) //不等于当前线程则会有错误
 throw new IllegalMonitorStateException();
 boolean free = false;
 if (c == 0) { //如果没有(并发),则设置为null,
 free = true;
 setExclusiveOwnerThread(null); 
 }
 setState(c);//应该和重入哦 重入锁解锁的时候不会唤醒下一个线程
 return free;
 }

非公平锁:

非公平锁很简单,在开始是直接去争夺修改status(0->1),没有使用链表,谁修改status成功谁拿到锁

 final void lock() {
 if (compareAndSetState(0, 1)) //
 setExclusiveOwnerThread(Thread.currentThread());
 else
 acquire(1);
 }
​
 protected final boolean tryAcquire(int acquires) {
 return nonfairTryAcquire(acquires);
 }
 final boolean nonfairTryAcquire(int acquires) {
 final Thread current = Thread.currentThread();
 int c = getState();
 if (c == 0) {
 if (compareAndSetState(0, acquires)) { //
 setExclusiveOwnerThread(current);
 return true;
 }
 }
 else if (current == getExclusiveOwnerThread()) {
 int nextc = c + acquires;
 if (nextc < 0) // overflow
 throw new Error("Maximum lock count exceeded");
 setState(nextc);
 return true;
 }
 return false;
 }

ReentrantLock使用方式 2):

Condtion condtion = ReentrantLock.newConditon();

condtion.await 和Object类的wait方法等效

condtion.signal 和Object类的notify方法等

condtion.signalAll Object类的notifyAll方法等效

ReentrantLock condition实现类 ConditionObject

Node 链表只使用了nextWaiter,组成一个队列,调用await会加入node链表tail,signal是通知head节点运行;signalALl是遍历链表,都去竞争啊

//共享锁 wait

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容