跟着Nature Ecology&Evolution学数据分析:R语言做方差分解的一个简单小例子

之前好多人在公众号留言问这个 方差分解 的内容,但是之前自己也没有听说过。最近看到有人分享了公众号推文 一种简单易行的方差分解方法。看了这个推文我目前理解的是 方差分解的主要作用是 量化回归模型Y=b0+b1x1+b2x2+…中x1, x2, x3…对Y贡献的相对大小,以及不同X所属的因素类别(如生物因素,非生物因素)对Y的贡献大小。

这篇推文以已经发表的论文中的数据为例子进行了介绍,论文是

image.png

这篇论文关于方差分解的内容数据代码是公开的,下载链接是

https://figshare.com/s/053837c4fa852f035448

image.png

我看了这些代码,有的地方还看不明白,但是利用数据能够跑通流程,今天先记录一下,后面抽时间再看,有什么新的理解再来记录

首先是读入数据
datatotal<-read.table("datasetmultifunctionality.txt", header=T, sep="\t")
colnames(datatotal)
接下来的代码是对数据进行转化

有的是常规的标准化

有的是log转化

常规的标准化开头提到的推文里介绍了方差分解必须用标准化后的数据,但是有的log转化是什么意思呢?

#####logtransformation moments
datatotal[,c(12,13,16,17)]<-log(datatotal[,c(12,13,16,17)])
datatotal[,14]<-log(datatotal[,14]-min(datatotal[,14])+1)
datatotal[,15]<-log(datatotal[,15]-min(datatotal[,15])+1)
datatotal[,18]<-log(datatotal[,18]-min(datatotal[,18])+1)
datatotal[,19]<-log(datatotal[,19]-min(datatotal[,19])+1)

#####Zscorring environmental variables
datatotal$ELEVATION<-(datatotal$ELEVATION-mean(datatotal$ELEVATION))/sd(datatotal$ELEVATION)
datatotal$LAT<-(datatotal$LAT-mean(datatotal$LAT))/sd(datatotal$LAT)
datatotal$SINLONG<-(datatotal$SINLONG-mean(datatotal$SINLONG))/sd(datatotal$SINLONG)
datatotal$COSLONG<-(datatotal$COSLONG-mean(datatotal$COSLONG))/sd(datatotal$COSLONG)
datatotal$SLO<-(datatotal$SLO-mean(datatotal$SLO))/sd(datatotal$SLO)
datatotal$ARIDITY<-(datatotal$ARIDITY-mean(datatotal$ARIDITY))/sd(datatotal$ARIDITY)
datatotal$SAND<-(datatotal$SAND-mean(datatotal$SAND))/sd(datatotal$SAND)
datatotal$PH<-(datatotal$PH-mean(datatotal$PH))/sd(datatotal$PH)
datatotal$SR<-(datatotal$SR-mean(datatotal$SR))/sd(datatotal$SR)

#####Zscorring moments
datatotal$CWM_logH<-(datatotal$CWM_logH-mean(datatotal$CWM_logH))/sd(datatotal$CWM_logH)
datatotal$CWV_logH<-(datatotal$CWV_logH-mean(datatotal$CWV_logH))/sd(datatotal$CWV_logH)
datatotal$CWS_logH<-(datatotal$CWS_logH-mean(datatotal$CWS_logH))/sd(datatotal$CWS_logH)
datatotal$CWK_logH<-(datatotal$CWK_logH-mean(datatotal$CWK_logH))/sd(datatotal$CWK_logH)
datatotal$CWM_logSLA<-(datatotal$CWM_logSLA-mean(datatotal$CWM_logSLA))/sd(datatotal$CWM_logSLA)
datatotal$CWV_logSLA<-(datatotal$CWV_logSLA-mean(datatotal$CWV_logSLA))/sd(datatotal$CWV_logSLA)
datatotal$CWS_logSLA<-(datatotal$CWS_logSLA-mean(datatotal$CWS_logSLA))/sd(datatotal$CWS_logSLA)
datatotal$CWK_logSLA<-(datatotal$CWK_logSLA-mean(datatotal$CWK_logSLA))/sd(datatotal$CWK_logSLA)

#####Zscorring ecosystem functions

datatotal$BGL<-(datatotal$BGL-mean(datatotal$BGL))/sd(datatotal$BGL)
datatotal$FOS<-(datatotal$FOS-mean(datatotal$FOS))/sd(datatotal$FOS)
datatotal$AMP<-(datatotal$AMP-mean(datatotal$AMP))/sd(datatotal$AMP)
datatotal$NTR<-(datatotal$NTR-mean(datatotal$NTR))/sd(datatotal$NTR)
datatotal$I.NDVI<-(datatotal$I.NDVI-mean(datatotal$I.NDVI))/sd(datatotal$I.NDVI)


#####Calculating indices of multifunctionality (M5: 5 functions)
colnames(datatotal)
M5<-rowMeans(datatotal[,c(20,21,22,23,24)])
datatotal<-cbind(datatotal,M5)


#####Log-transfromation of multifunctionality
logM5<-log(datatotal$M5-min(datatotal$M5)+1)
datatotal<-cbind(datatotal,logM5)

加载 MuMIn这个包做模型选择

代码是

library(MuMIn)
mod12<-lm(logM5 ~ LAT + SINLONG + COSLONG +   
            ARIDITY + SLO + SAND + PH + I(PH^2) + ELEVATION+
            CWM_logSLA + I(CWM_logSLA^2)+ CWV_logSLA + I(CWV_logSLA^2) +  CWS_logSLA + CWK_logSLA + I(CWK_logSLA^2) +
            CWM_logH + I(CWM_logH^2)+ CWV_logH + I(CWV_logH^2) +  CWS_logH + CWK_logH + I(CWK_logH^2) +
            SR
          , data=datatotal)
# 这一步要好长时间
dd12<-dredge(mod12, subset = ~ LAT & SINLONG & COSLONG & ARIDITY & SLO & SAND & PH &SR & ELEVATION &   
               dc(CWM_logSLA,I(CWM_logSLA^2)) & dc(CWV_logSLA,I(CWV_logSLA^2)) & dc(CWK_logSLA,I(CWK_logSLA^2)) 
             & dc(CWM_logH,I(CWM_logH^2)) & dc(CWV_logH,I(CWV_logH^2)) & dc(CWK_logH,I(CWK_logH^2)), 
             options(na.action = "na.fail"))

subset(dd12,delta<2)
de12<-model.avg(dd12, subset = delta < 2)
summary(de12)
image.png

image.png

这一步得到的数据就是论文中 的figure4a

image.png

下期推文介绍如何利用得到的数据画图

这里遇到的问题是:

  • 1、 模型里有的变量会用I()函数包起来,这个函数起到什么作用呢?
  • 2、模型选择那一步用到了dc()函数,这个函数又起到什么作用呢?

今天的内容就到这里了

欢迎大家关注我的公众号
小明的数据分析笔记本

小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

今天的内容主要参考

  • 公众号 二傻统计 的推文 一种简单易行的方差分解方法
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容