寻找无序数组中的第K大元素

如何寻找无序数组中的第K大元素?

有这样一个算法题:有一个无序数组,要求找出数组中的第K大元素。比如给定的无序数组如下所示:


image

如果k=6,也就是要寻找第6大的元素,很显然,数组中第一大元素是24,第二大元素是20,第三大元素是17...... 第六大元素是9

image

方法一:排序法

这是最容易想到的方法,先把无序数组从大到小进行排序,排序后的第k个元素自然就是数组中的第k大元素。但是这种方法的时间复杂度是O(nlogn),性能有些差。


image

方法二:插入法

维护一个长度为k的数组A的有序数组,用于存储已知的K个较大的元素。然后遍历无序数组,每遍历到一个元素,和数组A中的最小元素进行比较,如果小于等于数组A中的最小元素,继续遍历;如果大于数组A中的最小元素,则插入到数组A中,并把曾经的最小元素"挤出去"。

比如K=3,先把最左侧的7,5,15三个数有序放入到数组A中,代表当前最大的三个数。


image

此时,遍历到3时,由于3<5,继续遍历。


image

接下来遍历到17,由于17>5,插入到数组A的合适位置,类似于插入排序,并把原先最小的元素5“挤出去”。


image

继续遍历原数组,一直遍历到数组的最后一个元素......

最终,数组A中存储的元素是24,20,17,代表着整个数组的最大的3个元素。此时数组A中的最小元素17就是我们要寻找的第K大元素。


image

这个方法的时间复杂度是O(nk),但是如果K的值比较大的话,其性能可能还不如方法一。

小顶堆法

二叉堆是一种特殊的完全二叉树,它包含大顶堆和小顶堆两种形式。其中小顶堆的特点是每一个父节点都小于等于自己的两个子节点。要解决这个算法题,我们可以利用小顶堆的特性。

维护一个容量为K的小顶堆,堆中的K个节点代表着当前最大的K个元素,而堆顶显然是这K个元素中的最小值
遍历原数组,每遍历一个元素,就和堆顶比较,如果当前元素小于等于堆顶,则继续遍历;如果元素大于堆顶,则把当前元素放在堆顶位置,并调整二叉堆(下沉操作)。
遍历结束后,堆顶就是数组的最大K个元素中的最小值,也就是第K大元素

假设K=5,具体操作步骤如下:

1.把数组的前K个元素构建成堆

image

2.继续遍历数组,和堆顶比较,如果小于等于堆顶,则继续遍历;如果大于堆顶,则取代堆顶元素并调整堆。

遍历到元素2,由于2<3,所以继续遍历。


image

遍历到元素20,由于20>3,20取代堆顶位置,并调整堆。


image

image

遍历到元素24,由于24>5,24取代堆顶位置,并调整堆。


image

image

以此类推,我们一个一个遍历元素,当遍历到最后一个元素8时,小顶堆的情况如下:


image

3.此时的堆顶,就是堆中的最小元素,也就是数组中的第K大元素。

image

这个方法的时间复杂度是多少呢?

1.构建堆的时间复杂度是O(K)
2.遍历剩余数组的时间复杂度O(n-K)
3.每次调整堆的时间复杂度是O(logk)
其中2和3是嵌套关系,1和2,3是并列关系,所以总的最坏时间复杂度是O((n-k)logk + k)。当k远小于n的情况下,也可以近似地认为是O(nlogk)

这个方法的空间复杂度是多少呢?
刚才我们在详细步骤中把二叉堆单独拿出来演示,是为了便于理解。但如果允许改变原数组的话,我们可以把数组的前K个元素“原地交换”来构建成二叉堆,这样就免去了开辟额外的存储空间。因此空间复杂度是O(1)

代码如下:

/**
     * 寻找第k大元素
     * @param array 待调整的数组
     * @param k 第几大
     * @return
     */
    public static int findNumberK(int[] array, int k) {
        //1.用前k个元素构建小顶堆
        buildHeap(array, k);
        //2.继续遍历数组,和堆顶比较
        for (int i = k; i < array.length; i++) {
            if(array[i] > array[0]) {
                array[0] = array[i];
                downAdjust(array, 0, k);
            }
        }
        //3.返回堆顶元素
        return array[0];
    }

    private static void buildHeap(int[] array, int length) {
        //从最后一个非叶子节点开始,依次下沉调整
        for (int i = (length - 2) / 2; i >= 0; i--) {
            downAdjust(array, i, length);
        }
    }

    /**
     * 下沉调整
     * @param array 待调整的堆
     * @param index 要下沉的节点
     * @param length 堆的有效大小
     */
    private static void downAdjust(int[] array, int index, int length) {
        //temp保存父节点的值,用于最后的赋值
        int temp = array[index];
        int childIndex = 2 * index + 1;
        while (childIndex < length) {
            //如果有右孩子,且右孩子小于左孩子的值,则定位到右孩子
            if (childIndex + 1 < length && array[childIndex + 1] < array[childIndex]) {
                childIndex++;
            }
            //如果父节点小于任何一个孩子的值,直接跳出
            if (temp <= array[childIndex])
                break;
            //无需真正交换,单项赋值即可
            array[index] = array[childIndex];
            index = childIndex;
            childIndex = 2 * childIndex + 1;
        }
        array[index] = temp;
    }

    public static void main(String[] args) {
        int[] array = new int[] {7, 5, 15, 3, 17, 2, 20, 24, 1, 9, 12, 8};
        System.out.println(findNumberK(array, 5));
    }

方法四:分治法

大家都了解快速排序,快速排序利用分治法,每一次把数组分成较大和较小元素两部分。我们在寻找第K大元素的时候,也可以利用这个思路,以某个元素A为基准,把大于A的元素都交换到数组左边,小于A的元素交换到数组右边。

比如我们选择以元素7作为基准,把数组分成了左侧较大,右侧较小的两个区域,交换结果如下:


image

包括元素7在内的较大元素有8个,但我们的K=5,显然较大元素的数目过多了。于是我们在较大元素的区域继续分治,这次以元素12为基准:


image

这样一来,包括元素12在内的较大元素有5个,正好和K相等。所以,基准元素12就是我们所求的。

这就是分治法的思想,这种方法的时间复杂度甚至优于小顶堆法,可以达到O(n)。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,772评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,458评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,610评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,640评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,657评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,590评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,962评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,631评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,870评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,611评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,704评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,386评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,969评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,944评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,179评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,742评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,440评论 2 342

推荐阅读更多精彩内容

  • 一些概念 数据结构就是研究数据的逻辑结构和物理结构以及它们之间相互关系,并对这种结构定义相应的运算,而且确保经过这...
    Winterfell_Z阅读 5,646评论 0 13
  • 专业考题类型管理运行工作负责人一般作业考题内容选项A选项B选项C选项D选项E选项F正确答案 变电单选GYSZ本规程...
    小白兔去钓鱼阅读 8,970评论 0 13
  • 前言 2. 实现 Singleton 3. 数组中重复的数字 4. 二维数组中的查找 5. 替换空格 6. 从尾到...
    Observer_____阅读 2,909评论 0 1
  • 1 初级排序算法 排序算法关注的主要是重新排列数组元素,其中每个元素都有一个主键。排序算法是将所有元素主键按某种方...
    深度沉迷学习阅读 1,389评论 0 1
  • underscore为集合类对象提供了一直的接口。集合类是指 Array和Object,暂不支持Map和Set。 ...
    八宝君阅读 157评论 0 0