#Optimization tricks in Python: lists and tuples


Python has two similar sequence types such as tuples and lists. The most well-known difference between them is that tuples are immutable, that is, you cannot change their size as well as their immutable objects.

You can't changes items in a tuple:

>>> a = (1,2,3)
>>> a[0] = 10
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

But you can change mutable objects:

>>> b = (1,[1,2,3],3)
>>> b[1]
[1, 2, 3]
>>> b[1].append(4)
>>> b
(1, [1, 2, 3, 4], 3)

Internally, both lists and tuples are implemented as a list of pointers to the Python objects (items). When you remove an item from a list, the reference to an item gets destroyed. Keep in mind, that removed item can stay alive if there are other references in your program to it.

Tuples

Despite the fact that tuples are less popular than lists, it is a fundamental data type, which is used a lot internally.

You may not notice, but you are using tuples when:

  • working with arguments and parameters
  • returning 2 or more items from a function
  • iterating over dictionary's key-value pairs
  • using string formatting

Typically, a running program has thousands of allocated tuples.

>>> import gc
>>> def type_stats(type_obj):
...     count = 0
...     for obj in gc.get_objects():
...         if type(obj) == type_obj:
...             count += 1
...     return count
...
>>> type_stats(tuple)
3136
>>> type_stats(list)
659
>>> import pandas
>>> type_stats(tuple)
6953
>>> type_stats(list)
2455

Empty lists vs. empty tuples

Empty tuple acts as a singleton, that is, there is always only one tuple with a length of zero. When creating an empty tuple Python points to already preallocated one, in such way that any empty tuple has the same address in the memory. This is possible because tuples are immutable and sometimes saves a lot of memory.

>>> a = ()
>>> b = ()
>>> a is b
True
>>> id(a)
4409020488
>>> id(b)
4409020488

But this doesn't apply to lists since they can be modified.

>>> a = []
>>> b = []
>>> a is b
False
>>> id(a)
4465566920
>>> id(b)
4465370632

Allocation optimization for small tuples

To reduce memory fragmentation and speed up allocations, Python reuses old tuples. If a tuple no longer needed and has less than 20 items instead of deleting it permanently Python moves it to a free list.

A free list is divided into 20 groups, where each group represents a list of tuples of length n between 0 and 20. Each group can store up to 2 000 tuples. The first (zero) group contains only 1 element and represents an empty tuple.

>>> a = (1,2,3)
>>> id(a)
4427578104
>>> del a
>>> b = (1,2,4)
>>> id(b)
4427578104

In the example above we can see that a and b have the same id. That is because we immediately occupied a destroyed tuple which was on the free list.

Allocation optimization for lists

Since lists can be modified, Python does not use the same optimization as in tuples. However, Python lists also have a free list, but it is used only for empty objects. If an empty list is deleted or collected by GC, it can be reused later.

>>> a = []
>>> id(a)
4465566792
>>> del a
>>> b = []
>>> id(b)
4465566792

List resizing

To avoid the cost of resizing, Python does not resize a list every time you need to add or remove an item. Instead, every list has a number of empty slots which are hidden from a user but can be used for new items. If the slots are completely consumed Python over-allocates additional space for them. The number of additional slots is chosen based on the current size of the list.

Developer documentation describes it as follows:

This over-allocates proportional to the list size, making room for additional growth. The over-allocation is mild but is enough to give linear-time amortized behavior over a long sequence of appends() in the presence of a poorly-performing system realloc().

The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...

Note: new_allocated won't overflow because the largest possible value is PY_SSIZE_T_MAX * (9 / 8) + 6 which always fits in a size_t.

For example, if you want to append an item to a list of length 8, Python will resize it to16 slots and add the 9th item. The rest of the slots will be hidden and reserved for new items.

The growing factor looks as follows:

>>> def get_new_size(n_items):
...     new_size = n_items + (n_items // 2 ** 3)
...     if n_items < 9:
...             new_size += 3
...     else:
...             new_size += 6
...
...     return new_size
...
>>> get_new_size(9)
16

Performance

If you are interested in speed comparison, there is a good summary about the overall performance by Raymond Hettinger.

Reference

https://rushter.com/blog/python-lists-and-tuples/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,386评论 6 479
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,939评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,851评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,953评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,971评论 5 369
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,784评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,126评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,765评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,148评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,744评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,858评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,479评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,080评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,053评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,278评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,245评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,590评论 2 343

推荐阅读更多精彩内容