RSA加密算法

RSA加密算法是最常用的非对称加密算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。
  RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。


RSA的公钥、私钥的组成,以及加密、解密的公式

让我们先复习一下数学上的几个基本概念,它们在后面的介绍中要用到:

一、 什么是“素数”?   素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称为“质数”。

二、什么是“互质数”(或“互素数”)?   小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。
  判别方法主要有以下几种(不限于此):
(1)两个质数一定是互质数。例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。

三、什么是模指数运算?   
指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。
  模指数运算就是先做指数运算,取其结果再做模运算。如

image

好,现在开始正式讲解RSA加密算法
算法描述:
(1)选择一对不同的、足够大的素数p,q。
(2)计算n=pq。
(3)计算f(n)=(p-1)(q-1),同时对p, q严加保密,不让任何人知道。
(4)找一个与f(n)互质的数e,且1<e<f(n)。
(5)计算d,使得de≡1 mod f(n)。这个公式也可以表达为d ≡e-1 mod f(n)
这里要解释一下,≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号右边1 mod f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。
(6)公钥KU=(e,n),私钥KR=(d,n)。
(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:

加密过程

(8)解密过程为:
解密过程

实例描述:   在这篇科普小文章里,不可能对RSA算法的正确性作严格的数学证明,但我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下:
(1)设计公私密钥(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1 mod f(n),即3×d≡1 mod 20。
d怎样取值呢?可以用试算的办法来寻找。试算结果见下表:

image

通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。

(2)英文数字化。   将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值,即:

image

则得到分组后的key的明文信息为:11,05,25。
(3)明文加密
  用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡Me(mod n)得:

image

因此,得到相应的密文信息为:11,31,16。
4)密文解密。
  用户B收到密文,若将其解密,只需要计算

image

,即:


image

用户B得到明文信息为:11,05,25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。
   你看,它的原理就可以这么简单地解释!
   当然,实际运用要比这复杂得多,由于RSA算法的公钥私钥的长度(模长度)要到1024位甚至2048位才能保证安全,因此,p、q、e的选取、公钥私钥的生成,加密解密模指数运算都有一定的计算程序,需要仰仗计算机高速完成。

最后简单谈谈RSA的安全性    
首先,我们来探讨为什么RSA密码难于破解?
   在RSA密码应用中,公钥KU是被公开的,即e和n的数值可以被第三方窃听者得到。破解RSA密码的问题就是从已知的e和n的数值(n等于pq),想法求出d的数值,这样就可以得到私钥来破解密文。从上文中的公式:d ≡e-1 (mod((p-1)(q-1)))或de≡1 (mod((p-1)(q-1))) 我们可以看出。密码破解的实质问题是:从Pq的数值,去求出(p-1)和(q-1)。换句话说,只要求出p和q的值,我们就能求出d的值而得到私钥。
   当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。比如当pq大到1024位时,迄今为止还没有人能够利用任何计算工具去完成分解因子的任务。因此,RSA从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
  然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。
  此外,RSA的缺点还有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此,使用RSA只能加密少量数据,大量的数据加密还要靠对称密码算法。
用公钥加密时,私钥可以解密。反之亦然,私钥加密后的信息用公钥可以解密。

Linux 下通过 OpenSSL 生成 RSA 公钥和私钥

需要提前在 Linux 上安装 OpenSSL,默认生成在当前用户家目录下:

[root@VM_120_242_centos ~]# openssl 
OpenSSL> genrsa -out app_private_key.pem   1024  # 生成私钥
Generating RSA private key, 1024 bit long modulus
.++++++
........++++++
e is 65537 (0x10001)

OpenSSL> rsa -in app_private_key.pem -pubout -out app_public_key.pem  # 生成公钥
writing RSA key
OpenSSL> exit

对于 PHP 可以直接使用上面生成的原始私钥。但是 Java 需要将私钥转换成 PKCS8 格式,然后将生成的 PKCS8 格式的私钥去除头尾、换行和空格,作为私钥字符串填入代码中:

OpenSSL> pkcs8 -topk8 -inform PEM -in app_private_key.pem -outform PEM -nocrypt -out app_private_key_pkcs8.pem # 私钥转成 PKCS8 格式

查看生成的文件:

[root@VM_120_242_centos ~]# ll
总用量 1064
-rw-r--r-- 1 root root    887 6月  14 11:25 app_private_key.pem
-rw-r--r-- 1 root root    272 6月  14 11:25 app_public_key.pem

查看公钥:

-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC3//sR2tXw0wrC2DySx8vNGlqt
3Y7ldU9+LBLI6e1KS5lfc5jlTGF7KBTSkCHBM3ouEHWqp1ZJ85iJe59aF5gIB2kl
Bd6h4wrbbHA2XE1sq21ykja/Gqx7/IRia3zQfxGv/qEkyGOx+XALVoOlZqDwh76o
2n1vP1D+tD3amHsK7QIDAQAB
-----END PUBLIC KEY-----

转成 PKCS8 格式的公钥字符串为:

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC3//sR2tXw0wrC2DySx8vNGlqt3Y7ldU9+LBLI6e1KS5lfc5jlTGF7KBTSkCHBM3ouEHWqp1ZJ85iJe59aF5gIB2klBd6h4wrbbHA2XE1sq21ykja/Gqx7/IRia3zQfxGv/qEkyGOx+XALVoOlZqDwh76o2n1vP1D+tD3amHsK7QIDAQAB

查看私钥:

-----BEGIN RSA PRIVATE KEY-----
MIICXQIBAAKBgQC3//sR2tXw0wrC2DySx8vNGlqt3Y7ldU9+LBLI6e1KS5lfc5jl
TGF7KBTSkCHBM3ouEHWqp1ZJ85iJe59aF5gIB2klBd6h4wrbbHA2XE1sq21ykja/
Gqx7/IRia3zQfxGv/qEkyGOx+XALVoOlZqDwh76o2n1vP1D+tD3amHsK7QIDAQAB
AoGBAKH14bMitESqD4PYwODWmy7rrrvyFPEnJJTECLjvKB7IkrVxVDkp1XiJnGKH
2h5syHQ5qslPSGYJ1M/XkDnGINwaLVHVD3BoKKgKg1bZn7ao5pXT+herqxaVwWs6
ga63yVSIC8jcODxiuvxJnUMQRLaqoF6aUb/2VWc2T5MDmxLhAkEA3pwGpvXgLiWL
3h7QLYZLrLrbFRuRN4CYl4UYaAKokkAvZly04Glle8ycgOc2DzL4eiL4l/+x/gaq
deJU/cHLRQJBANOZY0mEoVkwhU4bScSdnfM6usQowYBEwHYYh/OTv1a3SqcCE1f+
qbAclCqeNiHajCcDmgYJ53LfIgyv0wCS54kCQAXaPkaHclRkQlAdqUV5IWYyJ25f
oiq+Y8SgCCs73qixrU1YpJy9yKA/meG9smsl4Oh9IOIGI+zUygh9YdSmEq0CQQC2
4G3IP2G3lNDRdZIm5NZ7PfnmyRabxk/UgVUWdk47IwTZHFkdhxKfC8QepUhBsAHL
QjifGXY4eJKUBm3FpDGJAkAFwUxYssiJjvrHwnHFbg0rFkvvY63OSmnRxiL4X6EY
yI9lblCsyfpl25l7l5zmJrAHn45zAiOoBrWqpM5edu7c
-----END RSA PRIVATE KEY-----

参考:
1. RSA - 原理、特点(加解密及签名验签)及公钥和私钥的生成
2. 用实例给新手讲解RSA加密算法

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容

  • RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest...
    暗物质阅读 1,679评论 0 0
  • http://blog.csdn.net/q376420785/article/details/8557266 h...
    John_cui阅读 626评论 0 4
  • 学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学...
    假装是小宇阅读 11,582评论 0 3
  • 必备数学知识 RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几...
    依然饭太稀阅读 843评论 0 0
  • 简介:不羁将在本文中介绍RSA的原理,但与其他的讲解不同的是,本文是循着发明者的思路,一步步来得出RSA算法的。这...
    鹏飞_3870阅读 475评论 0 1