Answer to CSE Handson 2

  • Answer 1

    The numbers of map workers and reduce workers.

  • Answer 2

  1. Init. Set maptask and reducetask parameters and split the input file into serverl small subfiles for parallel usage.
  • Run. Create a process pool.
  • Use pool.map function to call the WordCount's doMap function parallelly.
  • The doMap function calls user's map function and creates intermediate files which store some key/value pairs.
  • Then another pool.map calls the WordCount's doReduce function parallelly.
  • The doReduce function calls user's reduce function. Reduce function uses those intermediate files as input and does reduce operation.
  • Merge the result.
  • Answer 3

    • Key: the offset of a chunk of file contents

    • Value: a chunk of file contents.

  • Answer 4

    • Key: lower-case version of title-cased word

    • Value: pairs like {word, 1}, and the word is the same as the key.

  • Answer 5

    They are 4 times and 2 times. The size of iterable tells the invocation numbers. In this case, maptask is 4 and reducetask is 2.

    def run(self):
      pool = Pool(processes=max(self.maptask, self.reducetask),)
      regions = pool.map(self.doMap, range(0, self.maptask))
      partitions = pool.map(self.doReduce, range(0, self.reducetask))
    

    map(func, iterable[, chunksize])

    A parallel equivalent of the map() built-in function (it supports only one iterable argument though). It blocks until the result is ready.

    This method chops the iterable into a number of chunks which it submits to the process pool as separate tasks. The (approximate) size of these chunks can be specified by setting chunksize to a positive integer.

  • Answer 6

    The four invocations of doMap run in parallel. The two invocation of doReduce run in parallel. However, doMap and doReduce do not run in parallel because the map function blocks until the result is ready.

  • Answer 7

    • In theory, it's about 1,208,690 bytes, which can be calculated from:

      size = os.stat(self.path).st_size;
      chunk = size / self.maptask
      chunk += 1
      ## check the chunk size here and get the result
      
    • In fact, the actual size can be recorded by:

      def doMap(self, i):
        f = open("#split-%s-%s" % (self.path, i), "r")
        keyvalue = f.readline()
        value = f.read()
        f.close()
        print(len(value))
      

      So the size is (1,208,691+1,208,697+1,208,683+1,208,686) / 4 = 1 ,208,689.25

  • Answer 8

    
    def doReduce(self, i):
        keys = {}
        out = []
        count = 0;
        for m in range(0, self.maptask):
            # print "reduce", i, "#map-%s-%s-%d" % (self.path, m, i)
            f = open("#map-%s-%s-%d" % (self.path, m, i), "r")
            itemlist = pickle.load(f)
            for item in itemlist:
                if keys.has_key(item[0]):
                    keys[item[0]].append(item)
                else:
                    keys[item[0]] = [item]
                    count = count + 1
    

    我认为题目问的是key的数目而不是item的数目,如果问的是iem的数目,把count = count +1 放到上面的if中就好。

    I used a variable to record the keys processed and got 2,250 keys and 2,222 keys as a result of two doReduce. So the average is (2260 + 2222) / 2 = 2,236 keys per doReduce.

  • Answer 9

    ➜  handson-2 python mapreduce.py kjv12.txt
    maptask: 1    reducetask: 1    time: 2.28125s
    maptask: 1    reducetask: 2    time: 2.421875s
    maptask: 1    reducetask: 3    time: 2.328125s
    maptask: 1    reducetask: 4    time: 2.3125s
    maptask: 1    reducetask: 5    time: 2.28125s
    maptask: 1    reducetask: 6    time: 2.234375s
    maptask: 2    reducetask: 1    time: 2.25s
    maptask: 2    reducetask: 2    time: 2.234375s
    maptask: 2    reducetask: 3    time: 2.21875s
    maptask: 2    reducetask: 4    time: 2.265625s
    maptask: 2    reducetask: 5    time: 2.28125s
    maptask: 2    reducetask: 6    time: 2.328125s
    maptask: 3    reducetask: 1    time: 2.296875s
    maptask: 3    reducetask: 2    time: 2.25s
    maptask: 3    reducetask: 3    time: 2.46875s
    maptask: 3    reducetask: 4    time: 2.375s
    maptask: 3    reducetask: 5    time: 2.4375s
    maptask: 3    reducetask: 6    time: 2.3125s
    maptask: 4    reducetask: 1    time: 2.46875s
    maptask: 4    reducetask: 2    time: 2.4375s
    maptask: 4    reducetask: 3    time: 2.4375s
    maptask: 4    reducetask: 4    time: 2.296875s
    maptask: 4    reducetask: 5    time: 2.359375s
    maptask: 4    reducetask: 6    time: 2.34375s
    maptask: 5    reducetask: 1    time: 2.546875s
    maptask: 5    reducetask: 2    time: 2.546875s
    maptask: 5    reducetask: 3    time: 2.375s
    maptask: 5    reducetask: 4    time: 2.359375s
    maptask: 5    reducetask: 5    time: 2.40625s
    maptask: 5    reducetask: 6    time: 2.40625s
    maptask: 6    reducetask: 1    time: 2.53125s
    maptask: 6    reducetask: 2    time: 2.453125s
    maptask: 6    reducetask: 3    time: 2.4375s
    maptask: 6    reducetask: 4    time: 2.4375s
    maptask: 6    reducetask: 5    time: 2.421875s
    maptask: 6    reducetask: 6    time: 2.75s
    

    呈现先减后增的规律,我的电脑是双核的,每次两个task是比较适合电脑的并行性,所以当maptask/reducetask在2左右的时候,速度最快。

    当(maptask/reducetask - CPU cores)越大时,会产生更大的overhead,此时速度反而变慢。

  • Answer 10

    class ReverseIndex(MapReduce):
      def __init__(self, maptask, reducetask, path):
        MapReduce.__init__(self,  maptask, reducetask, path)
    
      # Produce a (key, value) pair for each title word in value
      def Map(self, keyvalue, value):
        results = []
        i = 0
        n = len(value)
        while i < n:
          # skip non-ascii letters in C/C++ style a la MapReduce paper:
          while i < n and value[i] not in string.ascii_letters:
            i += 1
          start = i
          while i < n and value[i] in string.ascii_letters:
            i += 1
          w = value[start:i]
          if start < i and w.istitle():
            results.append ((w.lower(), int(keyvalue) + start))
        return results
    
      # Reduce [(key,value), ...])
      def Reduce(self, key, keyvalues):
        return (key, [pair[1] for pair in keyvalues])
    
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343