浅谈p值(p-value是什么)

当我们说到p-value时,我们在说什么?

“这个变量的p-value小于0.05,所以这个变量很重要”

........

你真的知道自己在说什么么???这个p-value到底是个什么鬼?为什么小于0.05就很重要?很重要是什么意思?????

终于...

这次,我们通俗易懂地来讲讲到底什么是p-value(p值)。

在讲p-value之前,我们用掷硬币来举个例子。

硬币有正反两面,在概率中我们知道,出现正反面的概率各为50%(1/2),所以作为一个正常的硬币,如果我们投无限次后,结果一定会是正反各占50%。但是,如果我想知道自己手中的硬币,到底是不是正常的硬币,有没有做过手脚,在实际操作中是没办法投掷无限次的。因此,我们只能用有限的结果来判断“硬币是否为常规硬币”这个问题的答案。

在统计学上,做这个检验时,通常会设定一个虚无假设(也叫零假设,Null Hypothesis),通常记作H0。以及一个对立假设(Alternative Hypothesis),及与虚无假设对立的假设,如果证明虚无假设错误,则可以推出对立假设成立。

在掷硬币这个例子中,我们可以设定

H0: 手中的硬币是常规硬币

H1: 手中的硬币做过手脚

如果手中硬币是常规硬币,我们知道正面和反面出现的概率各为50%,所以如果我投掷10次硬币,则正面和反面出现的次数各位5次。正面5次,反面5次,就是我们对于投掷10次硬币的期望值(expected value)。

现在我们开始投掷硬币,出现的是正面3次,反面7次。这个结果就是我们对于投掷10次硬币的观测值(observed valued),即实际的结果。

通过分析期望值和观测值的差距,我们就可以判断出硬币是否正常。而这个期望值和观测值差距的判断方法就是chi-square。

Figure 1 chi-square计算公式

上图即为chi-square的计算公式,O代表观测值(observed value),E代表期望值(expected value)。有没有觉得这和方差的公式很像?没错,其实方差是一组数据与其均值的比较,而chi-suaqre是一组数据与另一组数据期望值的比较。

那么在掷硬币这个例子中chi-square(卡方)=(3-5)^2/5+(7-5)^2/5=1.6

Figure 2 掷硬币实验:观测值与期望值对比表

算出了chi-square,那么又怎判断检验结果呢?现在,跟我一起把卡方分布表(见Figure 2)拿出来~

Figure 3 卡方分布表

上图即为卡方分布表,左上角的α表示错误拒绝H0假设的概率(即虚无假设事实上成立,但我们计算出的结果却错误判断虚无假设不成立的概率)。n代表自由度(degree of freedom),即独立变量数减1,在这个例子中,独立变量数为2(正面和反面),所以自由度为1(2-1=1)。

当然,你也会见到与上图不一样的卡方分布图,比如Figure 3。P代表α,即P(当H0为真时拒绝H0)(其实就是p-value),df代表自由度(degree of freedom)。

Figure 4 卡方分布表

假设置信度为95%,即错误拒绝H0的概率为0.05。展开解释就是,我们有95%的概率确信检验结果正确,有5%的概率会错误拒绝虚无假设。(我们总说的p值与0.05比较就是这个啦,其实不一定时0.05,根据具体情况可以设置不一样的值,只是大部分时候都用0.05)

对照着卡方分布表(Figure 4),找到1所在的行(我们计算出的chi-square自由度是1),发现1.6是介于1.323和2.706之间,查表得出其p值为0.25到0.1之间,大于0.05,所以我们不能拒绝H0。换句话说,H0成立,即硬币是常规硬币,没有做手脚。

Figure 5 卡方分布表(chi-square=1.6)

大家通过观察卡方分布表能够发现,在用一个自由度下,chi-square越大,其p值就越小。举个极端的例子,如果在掷硬币的例子中,我投掷10次硬币,刚好5次正面,5次反面,则此时算是的chi-square为0(观测值与期望值一致),这时的p-value是远大于0.095,没有理由拒绝H0,H0假设成立,即硬币是常规硬币。

Figure 6 卡方分布表(chi-square=0)

总结一下,

p-value的作用:p-value就是用来判断H0假设是否成立的依据。因为期望值是基于H0假设得出的,如果观测值与期望值越一致,则说明检验现象与零假设越接近,则越没有理由拒绝零假设。如果观测值与期望值越偏离,说明零假设越站不住脚,则越有理由拒绝零假设,从而推出对立假设的成立。

p-value的计算:计算chi-suqare,计算自由度,查卡方分布表。

总的思路是,

做出H0,H1这对互斥的假设,计算出H0为真时的期望值,统计出实际的观测值,通过期望值和观测值求得chi-square(卡方),再通过卡方查表,得到p值。根据p值与α(1-置信度)的比较,如果p-value<α,则拒绝(reject)H0,推出H1成立;如果p-value>α,则接受(accpet)H0,推出H1不成立。

最后再划重点,把开头的几个问题再解释下。

【这个p-value到底是个什么鬼?】p值可通过计算chi-square后查询卡方分布表得出,用于判断H0假设是否成立的依据。

【为什么小于0.05就很重要?】大部分时候,我们假设错误拒绝H0的概率为0.05,所以如果p值小于0.05,说明错误拒绝H0的概率很低,则我们有理由相信H0本身就是错误的,而非检验错误导致。大部分时候p-value用于检验独立变量与输入变量的关系,H0假设通常为假设两者没有关系,所以若p值小于0.05,则可以推翻H0(两者没有关系),推出H1(两者有关系)。

【很重要是什么意思?】当p值小于0.05时,我们就说这个独立变量重要(significant),因为这个独立变量与输出结果有关系。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,311评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,339评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,671评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,252评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,253评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,031评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,340评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,973评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,466评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,937评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,039评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,701评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,254评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,259评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,497评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,786评论 2 345

推荐阅读更多精彩内容