优先队列
优先队列 :出队顺序与入队顺序无关;和优先级相关,是由堆实现的
头文件是queue
定义:priority_queue<Type, Container, Functional>
Type 就是数据类型,Container 就是容器类型(Container必须是用数组实现的容器,比如vector,deque等等,但不能用 list。STL里面默认用的是vector),Functional 就是比较的方式。
基本操作
top 访问队头元素
empty 队列是否为空
size 返回队列内元素个数
push 插入元素到队尾 (并排序)
emplace 原地构造一个元素并插入队列
pop 弹出队头元素
swap 交换内容
堆排序
堆排序相对其它nlogn级别的排序算法来说效率还是低的。
堆这种数据结构更多还是用于动态数据的维护。
建一个堆
最大堆,最小堆的话把shift up函数和shift dowm函数改下比较符就行了
核心是shiftUp和shiftDown操作
template<typename Item>
class MaxHeap{
private:
Item *data;
int count;
int capacity;
void shiftUp(int k){
while( k > 1 && data[k/2] < data[k] ){
swap( data[k/2], data[k] );
k /= 2;
}
}
void shiftDown(int k){
while( 2*k <= count ){
int j = 2*k;
if( j+1 <= count && data[j+1] > data[j] ) j ++;
if( data[k] >= data[j] ) break;
swap( data[k] , data[j] );
k = j;
}
}
public:
// 构造函数, 构造一个空堆, 可容纳capacity个元素
MaxHeap(int capacity){
data = new Item[capacity+1];
count = 0;
this->capacity = capacity;
}
// 构造函数, 通过一个给定数组创建一个最大堆
// 该构造堆的过程, 时间复杂度为O(n)
MaxHeap(Item arr[], int n){
data = new Item[n+1];
capacity = n;
for( int i = 0 ; i < n ; i ++ )
data[i+1] = arr[i];
count = n;
for( int i = count/2 ; i >= 1 ; i -- ) //heapify
shiftDown(i);
}
~MaxHeap(){
delete[] data;
}
// 返回堆中的元素个数
int size(){
return count;
}
// 返回一个布尔值, 表示堆中是否为空
bool isEmpty(){
return count == 0;
}
// 像最大堆中插入一个新的元素 item
void insert(Item item){
assert( count + 1 <= capacity );
data[count+1] = item;
shiftUp(count+1);
count ++;
}
// 从最大堆中取出堆顶元素, 即堆中所存储的最大数据
Item extractMax(){
assert( count > 0 );
Item ret = data[1];
swap( data[1] , data[count] );
count --;
shiftDown(1);
return ret;
}
// 获取最大堆中的堆顶元素
Item getMax(){
assert( count > 0 );
return data[1];
}
};
将n个元素逐个插入到一个空堆中,算法复杂度是O(nlogn)
heapify
heapify就是从第5个结点开始到第1个结点不断shift down
// heapSort1, 将所有的元素依次添加到堆中, 在将所有元素从堆中依次取出来, 即完成了排序
// 无论是创建堆的过程, 还是从堆中依次取出元素的过程, 时间复杂度均为O(nlogn)
// 整个堆排序的整体时间复杂度为O(nlogn)
template<typename T>
void heapSort1(T arr[], int n){
MaxHeap<T> maxheap = MaxHeap<T>(n);
for( int i = 0 ; i < n ; i ++ )
maxheap.insert(arr[i]);
for( int i = n-1 ; i >= 0 ; i-- )
arr[i] = maxheap.extractMax();
}
// heapSort2, 借助我们的heapify过程创建堆
// 此时, 创建堆的过程时间复杂度为O(n), 将所有元素依次从堆中取出来, 实践复杂度为O(nlogn)
// 堆排序的总体时间复杂度依然是O(nlogn), 但是比上述heapSort1性能更优, 因为创建堆的性能更优
template<typename T>
void heapSort2(T arr[], int n){
MaxHeap<T> maxheap = MaxHeap<T>(arr,n);
for( int i = n-1 ; i >= 0 ; i-- )
arr[i] = maxheap.extractMax();
}
原地堆排序
数组shiftDown:
// 原始的shiftDown过程
template<typename T>
void __shiftDown(T arr[], int n, int k){
while( 2*k+1 < n ){
int j = 2*k+1;
if( j+1 < n && arr[j+1] > arr[j] )
j += 1;
if( arr[k] >= arr[j] )break;
swap( arr[k] , arr[j] );
k = j;
}
}
// 优化的shiftDown过程, 使用赋值的方式取代不断的swap,
// 该优化思想和我们之前对插入排序进行优化的思路是一致的
template<typename T>
void __shiftDown2(T arr[], int n, int k){
T e = arr[k];
while( 2*k+1 < n ){
int j = 2*k+1;
if( j+1 < n && arr[j+1] > arr[j] )
j += 1;
if( e >= arr[j] ) break;
arr[k] = arr[j];
k = j;
}
arr[k] = e;
}
原地堆排序是先
原地堆排序由于没有开辟新内存,效率会好一些
// 不使用一个额外的最大堆, 直接在原数组上进行原地的堆排序
template<typename T>
void heapSort(T arr[], int n){
// 注意,此时我们的堆是从0开始索引的
// 从(最后一个元素的索引-1)/2开始
// 最后一个元素的索引 = n-1
for( int i = (n-1-1)/2 ; i >= 0 ; i -- ) //建最大堆
__shiftDown2(arr, n, i);
for( int i = n-1; i > 0 ; i-- ){ //每次把最大堆的最大值与最后的叶子结点交换,再将索引点0 shiftdown重新建堆,重复如此,最后得到升序的数组
swap( arr[0] , arr[i] );
__shiftDown2(arr, i, 0);
}
}
索引堆
data数组用来存放数据,index用来进行堆排序,data数组不变。
常用于堆中元素所占内存大小不一时。
// 最大索引堆
template<typename Item>
class IndexMaxHeap{
private:
Item *data; // 最大索引堆中的数据
int *indexes; // 最大索引堆中的索引
int count;
int capacity;
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftUp( int k ){
while( k > 1 && data[indexes[k/2]] < data[indexes[k]] ){
swap( indexes[k/2] , indexes[k] );
k /= 2;
}
}
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftDown( int k ){
while( 2*k <= count ){
int j = 2*k;
if( j + 1 <= count && data[indexes[j+1]] > data[indexes[j]] )
j += 1;
if( data[indexes[k]] >= data[indexes[j]] )
break;
swap( indexes[k] , indexes[j] );
k = j;
}
}
public:
// 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
IndexMaxHeap(int capacity){
data = new Item[capacity+1];
indexes = new int[capacity+1];
count = 0;
this->capacity = capacity;
}
~IndexMaxHeap(){
delete[] data;
delete[] indexes;
}
// 返回索引堆中的元素个数
int size(){
return count;
}
// 返回一个布尔值, 表示索引堆中是否为空
bool isEmpty(){
return count == 0;
}
// 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
// 传入的i对用户而言,是从0索引的
void insert(int i, Item item){
assert( count + 1 <= capacity );
assert( i + 1 >= 1 && i + 1 <= capacity );
i += 1;
data[i] = item;
indexes[count+1] = i;
count++;
shiftUp(count);
}
// 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
Item extractMax(){
assert( count > 0 );
Item ret = data[indexes[1]];
swap( indexes[1] , indexes[count] );
count--;
shiftDown(1);
return ret;
}
// 从最大索引堆中取出堆顶元素的索引
int extractMaxIndex(){
assert( count > 0 );
int ret = indexes[1] - 1;
swap( indexes[1] , indexes[count] );
count--;
shiftDown(1);
return ret;
}
// 获取最大索引堆中的堆顶元素
Item getMax(){
assert( count > 0 );
return data[indexes[1]];
}
// 获取最大索引堆中的堆顶元素的索引
int getMaxIndex(){
assert( count > 0 );
return indexes[1]-1;
}
// 获取最大索引堆中索引为i的元素
Item getItem( int i ){
assert( i + 1 >= 1 && i + 1 <= capacity );
return data[i+1];
}
// 将最大索引堆中索引为i的元素修改为newItem
void change( int i , Item newItem ){
i += 1;
data[i] = newItem;
// 找到indexes[j] = i, j表示data[i]在堆中的位置
// 之后shiftUp(j), 再shiftDown(j)
for( int j = 1 ; j <= count ; j ++ )
if( indexes[j] == i ){
shiftUp(j);
shiftDown(j);
return;
}
}
};
在后续的图论中, 无论是最小生成树算法, 还是最短路径算法, 都需要使用索引堆进行优化
索引堆的优化
reverse[i]表示索引i在indexes(堆)中的位置。节省了在修改结点数据change函数的时间,不需要循环for查找索引点indexes[j]=i中的j。
// 最大索引堆
template<typename Item>
class IndexMaxHeap{
private:
Item *data; // 最大索引堆中的数据
int *indexes; // 最大索引堆中的索引, indexes[x] = i 表示索引i在x的位置
int *reverse; // 最大索引堆中的反向索引, reverse[i] = x 表示索引i在x的位置
int count;
int capacity;
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftUp( int k ){
while( k > 1 && data[indexes[k/2]] < data[indexes[k]] ){
swap( indexes[k/2] , indexes[k] );
reverse[indexes[k/2]] = k/2;
reverse[indexes[k]] = k;
k /= 2;
}
}
// 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
void shiftDown( int k ){
while( 2*k <= count ){
int j = 2*k;
if( j + 1 <= count && data[indexes[j+1]] > data[indexes[j]] )
j += 1;
if( data[indexes[k]] >= data[indexes[j]] )
break;
swap( indexes[k] , indexes[j] );
reverse[indexes[k]] = k;
reverse[indexes[j]] = j;
k = j;
}
}
public:
// 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
IndexMaxHeap(int capacity){
data = new Item[capacity+1];
indexes = new int[capacity+1];
reverse = new int[capacity+1];
for( int i = 0 ; i <= capacity ; i ++ )
reverse[i] = 0;
count = 0;
this->capacity = capacity;
}
~IndexMaxHeap(){
delete[] data;
delete[] indexes;
delete[] reverse;
}
// 返回索引堆中的元素个数
int size(){
return count;
}
// 返回一个布尔值, 表示索引堆中是否为空
bool isEmpty(){
return count == 0;
}
// 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
// 传入的i对用户而言,是从0索引的
void insert(int i, Item item){
assert( count + 1 <= capacity );
assert( i + 1 >= 1 && i + 1 <= capacity );
// 再插入一个新元素前,还需要保证索引i所在的位置是没有元素的。
assert( !contain(i) );
i += 1;
data[i] = item;
indexes[count+1] = i;
reverse[i] = count+1;
count++;
shiftUp(count);
}
// 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
Item extractMax(){
assert( count > 0 );
Item ret = data[indexes[1]];
swap( indexes[1] , indexes[count] );
reverse[indexes[count]] = 0;
count--;
if(count){
reverse[indexes[1]] = 1;
shiftDown(1);
}
return ret;
}
// 从最大索引堆中取出堆顶元素的索引
int extractMaxIndex(){
assert( count > 0 );
int ret = indexes[1] - 1;
swap( indexes[1] , indexes[count] );
reverse[indexes[count]] = 0;
count--;
if(count) {
reverse[indexes[1]] = 1;
shiftDown(1);
}
return ret;
}
// 获取最大索引堆中的堆顶元素
Item getMax(){
assert( count > 0 );
return data[indexes[1]];
}
// 获取最大索引堆中的堆顶元素的索引
int getMaxIndex(){
assert( count > 0 );
return indexes[1]-1;
}
// 看索引i所在的位置是否存在元素
bool contain( int i ){
assert( i + 1 >= 1 && i + 1 <= capacity );
return reverse[i+1] != 0;
}
// 获取最大索引堆中索引为i的元素
Item getItem( int i ){
assert( contain(i) );
return data[i+1];
}
// 将最大索引堆中索引为i的元素修改为newItem
void change( int i , Item newItem ){ //这里容易看不懂,实际上是把indexes[j]传进来
assert( contain(i) );
i += 1;
data[i] = newItem;
// 找到indexes[j] = i, j表示data[i]在堆中的位置
// 之后shiftUp(j), 再shiftDown(j)
// for( int j = 1 ; j <= count ; j ++ )
// if( indexes[j] == i ){
// shiftUp(j);
// shiftDown(j);
// return;
// }
// 有了 reverse 之后,
// 我们可以非常简单的通过reverse直接定位索引i在indexes中的位置
shiftUp( reverse[i] );
shiftDown( reverse[i] );
}
};
算法总结
虽然堆排序较其它nlogn级别排序算法慢,但胜在空间复杂度为O(1)。
快排的额外空间logn是递归造成的。
自顶向下的归并排序额外空间是O(logn+n),自底向上的归并排序额外空间是O(n)