堆 | 堆排序、优先队列

优先队列

优先队列 :出队顺序与入队顺序无关;和优先级相关,是由堆实现的
头文件是queue

定义:priority_queue<Type, Container, Functional>
Type 就是数据类型,Container 就是容器类型(Container必须是用数组实现的容器,比如vector,deque等等,但不能用 list。STL里面默认用的是vector),Functional 就是比较的方式。

基本操作
top 访问队头元素
empty 队列是否为空
size 返回队列内元素个数
push 插入元素到队尾 (并排序)
emplace 原地构造一个元素并插入队列
pop 弹出队头元素
swap 交换内容

堆排序

堆排序相对其它nlogn级别的排序算法来说效率还是低的。
堆这种数据结构更多还是用于动态数据的维护。

建一个堆

最大堆,最小堆的话把shift up函数和shift dowm函数改下比较符就行了
核心是shiftUp和shiftDown操作

template<typename Item>
class MaxHeap{

private:
    Item *data;
    int count;
    int capacity;

    void shiftUp(int k){
        while( k > 1 && data[k/2] < data[k] ){
            swap( data[k/2], data[k] );
            k /= 2;
        }
    }

    void shiftDown(int k){
        while( 2*k <= count ){
            int j = 2*k;
            if( j+1 <= count && data[j+1] > data[j] ) j ++;
            if( data[k] >= data[j] ) break;
            swap( data[k] , data[j] );
            k = j;
        }
    }

public:

    // 构造函数, 构造一个空堆, 可容纳capacity个元素
    MaxHeap(int capacity){
        data = new Item[capacity+1];
        count = 0;
        this->capacity = capacity;
    }

    // 构造函数, 通过一个给定数组创建一个最大堆
    // 该构造堆的过程, 时间复杂度为O(n)
    MaxHeap(Item arr[], int n){    
        data = new Item[n+1];
        capacity = n;

        for( int i = 0 ; i < n ; i ++ )
            data[i+1] = arr[i];
        count = n;

        for( int i = count/2 ; i >= 1 ; i -- )    //heapify
            shiftDown(i);
    }

    ~MaxHeap(){
        delete[] data;
    }

    // 返回堆中的元素个数
    int size(){
        return count;
    }

    // 返回一个布尔值, 表示堆中是否为空
    bool isEmpty(){
        return count == 0;
    }

    // 像最大堆中插入一个新的元素 item
    void insert(Item item){
        assert( count + 1 <= capacity );
        data[count+1] = item;
        shiftUp(count+1);
        count ++;
    }

    // 从最大堆中取出堆顶元素, 即堆中所存储的最大数据
    Item extractMax(){
        assert( count > 0 );
        Item ret = data[1];
        swap( data[1] , data[count] );
        count --;
        shiftDown(1);
        return ret;
    }

    // 获取最大堆中的堆顶元素
    Item getMax(){
        assert( count > 0 );
        return data[1];
    }
};

将n个元素逐个插入到一个空堆中,算法复杂度是O(nlogn)

heapify

heapify就是从第5个结点开始到第1个结点不断shift down

// heapSort1, 将所有的元素依次添加到堆中, 在将所有元素从堆中依次取出来, 即完成了排序
// 无论是创建堆的过程, 还是从堆中依次取出元素的过程, 时间复杂度均为O(nlogn)
// 整个堆排序的整体时间复杂度为O(nlogn)
template<typename T>
void heapSort1(T arr[], int n){

    MaxHeap<T> maxheap = MaxHeap<T>(n);
    for( int i = 0 ; i < n ; i ++ )
        maxheap.insert(arr[i]);

    for( int i = n-1 ; i >= 0 ; i-- )
        arr[i] = maxheap.extractMax();

}


// heapSort2, 借助我们的heapify过程创建堆
// 此时, 创建堆的过程时间复杂度为O(n), 将所有元素依次从堆中取出来, 实践复杂度为O(nlogn)
// 堆排序的总体时间复杂度依然是O(nlogn), 但是比上述heapSort1性能更优, 因为创建堆的性能更优
template<typename T>
void heapSort2(T arr[], int n){

    MaxHeap<T> maxheap = MaxHeap<T>(arr,n);
    for( int i = n-1 ; i >= 0 ; i-- )
        arr[i] = maxheap.extractMax();

}

原地堆排序

数组shiftDown:

// 原始的shiftDown过程
template<typename T>
void __shiftDown(T arr[], int n, int k){

    while( 2*k+1 < n ){
        int j = 2*k+1;
        if( j+1 < n && arr[j+1] > arr[j] )
            j += 1;

        if( arr[k] >= arr[j] )break;

        swap( arr[k] , arr[j] );
        k = j;
    }
}

// 优化的shiftDown过程, 使用赋值的方式取代不断的swap,
// 该优化思想和我们之前对插入排序进行优化的思路是一致的
template<typename T>
void __shiftDown2(T arr[], int n, int k){

    T e = arr[k];
    while( 2*k+1 < n ){
        int j = 2*k+1;
        if( j+1 < n && arr[j+1] > arr[j] )
            j += 1;

        if( e >= arr[j] ) break;

        arr[k] = arr[j];
        k = j;
    }

    arr[k] = e;
}

原地堆排序是先

原地堆排序由于没有开辟新内存,效率会好一些

// 不使用一个额外的最大堆, 直接在原数组上进行原地的堆排序
template<typename T>
void heapSort(T arr[], int n){

    // 注意,此时我们的堆是从0开始索引的
    // 从(最后一个元素的索引-1)/2开始
    // 最后一个元素的索引 = n-1
    for( int i = (n-1-1)/2 ; i >= 0 ; i -- )   //建最大堆
        __shiftDown2(arr, n, i);

    for( int i = n-1; i > 0 ; i-- ){       //每次把最大堆的最大值与最后的叶子结点交换,再将索引点0 shiftdown重新建堆,重复如此,最后得到升序的数组
        swap( arr[0] , arr[i] );
        __shiftDown2(arr, i, 0);
    }
}
索引堆

data数组用来存放数据,index用来进行堆排序,data数组不变。
常用于堆中元素所占内存大小不一时。

// 最大索引堆
template<typename Item>
class IndexMaxHeap{

private:
    Item *data;     // 最大索引堆中的数据
    int *indexes;   // 最大索引堆中的索引

    int count;
    int capacity;

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftUp( int k ){

        while( k > 1 && data[indexes[k/2]] < data[indexes[k]] ){
            swap( indexes[k/2] , indexes[k] );
            k /= 2;
        }
    }

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftDown( int k ){

        while( 2*k <= count ){
            int j = 2*k;
            if( j + 1 <= count && data[indexes[j+1]] > data[indexes[j]] )
                j += 1;

            if( data[indexes[k]] >= data[indexes[j]] )
                break;

            swap( indexes[k] , indexes[j] );
            k = j;
        }
    }

public:
    // 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
    IndexMaxHeap(int capacity){

        data = new Item[capacity+1];
        indexes = new int[capacity+1];

        count = 0;
        this->capacity = capacity;
    }

    ~IndexMaxHeap(){
        delete[] data;
        delete[] indexes;
    }

    // 返回索引堆中的元素个数
    int size(){
        return count;
    }

    // 返回一个布尔值, 表示索引堆中是否为空
    bool isEmpty(){
        return count == 0;
    }

    // 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
    // 传入的i对用户而言,是从0索引的
    void insert(int i, Item item){
        assert( count + 1 <= capacity );
        assert( i + 1 >= 1 && i + 1 <= capacity );

        i += 1;
        data[i] = item;
        indexes[count+1] = i;
        count++;

        shiftUp(count);
    }

    // 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
    Item extractMax(){
        assert( count > 0 );

        Item ret = data[indexes[1]];
        swap( indexes[1] , indexes[count] );
        count--;
        shiftDown(1);
        return ret;
    }

    // 从最大索引堆中取出堆顶元素的索引
    int extractMaxIndex(){
        assert( count > 0 );

        int ret = indexes[1] - 1;
        swap( indexes[1] , indexes[count] );
        count--;
        shiftDown(1);
        return ret;
    }

    // 获取最大索引堆中的堆顶元素
    Item getMax(){
        assert( count > 0 );
        return data[indexes[1]];
    }

    // 获取最大索引堆中的堆顶元素的索引
    int getMaxIndex(){
        assert( count > 0 );
        return indexes[1]-1;
    }

    // 获取最大索引堆中索引为i的元素
    Item getItem( int i ){
        assert( i + 1 >= 1 && i + 1 <= capacity );
        return data[i+1];
    }

    // 将最大索引堆中索引为i的元素修改为newItem
    void change( int i , Item newItem ){

        i += 1;
        data[i] = newItem;

        // 找到indexes[j] = i, j表示data[i]在堆中的位置
        // 之后shiftUp(j), 再shiftDown(j)
        for( int j = 1 ; j <= count ; j ++ )
            if( indexes[j] == i ){
                shiftUp(j);
                shiftDown(j);
                return;
            }
    }

};

在后续的图论中, 无论是最小生成树算法, 还是最短路径算法, 都需要使用索引堆进行优化

索引堆的优化

reverse[i]表示索引i在indexes(堆)中的位置。节省了在修改结点数据change函数的时间,不需要循环for查找索引点indexes[j]=i中的j。


// 最大索引堆
template<typename Item>
class IndexMaxHeap{

private:
    Item *data;     // 最大索引堆中的数据
    int *indexes;   // 最大索引堆中的索引, indexes[x] = i 表示索引i在x的位置
    int *reverse;   // 最大索引堆中的反向索引, reverse[i] = x 表示索引i在x的位置

    int count;
    int capacity;

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftUp( int k ){

        while( k > 1 && data[indexes[k/2]] < data[indexes[k]] ){
            swap( indexes[k/2] , indexes[k] );
            reverse[indexes[k/2]] = k/2;
            reverse[indexes[k]] = k;
            k /= 2;
        }
    }

    // 索引堆中, 数据之间的比较根据data的大小进行比较, 但实际操作的是索引
    void shiftDown( int k ){

        while( 2*k <= count ){
            int j = 2*k;
            if( j + 1 <= count && data[indexes[j+1]] > data[indexes[j]] )
                j += 1;

            if( data[indexes[k]] >= data[indexes[j]] )
                break;

            swap( indexes[k] , indexes[j] );
            reverse[indexes[k]] = k;
            reverse[indexes[j]] = j;
            k = j;
        }
    }

public:
    // 构造函数, 构造一个空的索引堆, 可容纳capacity个元素
    IndexMaxHeap(int capacity){

        data = new Item[capacity+1];
        indexes = new int[capacity+1];
        reverse = new int[capacity+1];
        for( int i = 0 ; i <= capacity ; i ++ )
            reverse[i] = 0;

        count = 0;
        this->capacity = capacity;
    }

    ~IndexMaxHeap(){
        delete[] data;
        delete[] indexes;
        delete[] reverse;
    }

    // 返回索引堆中的元素个数
    int size(){
        return count;
    }

    // 返回一个布尔值, 表示索引堆中是否为空
    bool isEmpty(){
        return count == 0;
    }

    // 向最大索引堆中插入一个新的元素, 新元素的索引为i, 元素为item
    // 传入的i对用户而言,是从0索引的
    void insert(int i, Item item){
        assert( count + 1 <= capacity );
        assert( i + 1 >= 1 && i + 1 <= capacity );

        // 再插入一个新元素前,还需要保证索引i所在的位置是没有元素的。
        assert( !contain(i) );

        i += 1;
        data[i] = item;
        indexes[count+1] = i;
        reverse[i] = count+1;
        count++;

        shiftUp(count);
    }

    // 从最大索引堆中取出堆顶元素, 即索引堆中所存储的最大数据
    Item extractMax(){
        assert( count > 0 );

        Item ret = data[indexes[1]];
        swap( indexes[1] , indexes[count] );
        reverse[indexes[count]] = 0;
        count--;

        if(count){
            reverse[indexes[1]] = 1;
            shiftDown(1);
        }

        return ret;
    }

    // 从最大索引堆中取出堆顶元素的索引
    int extractMaxIndex(){
        assert( count > 0 );

        int ret = indexes[1] - 1;
        swap( indexes[1] , indexes[count] );
        reverse[indexes[count]] = 0;
        count--;

        if(count) {
            reverse[indexes[1]] = 1;
            shiftDown(1);
        }

        return ret;
    }

    // 获取最大索引堆中的堆顶元素
    Item getMax(){
        assert( count > 0 );
        return data[indexes[1]];
    }

    // 获取最大索引堆中的堆顶元素的索引
    int getMaxIndex(){
        assert( count > 0 );
        return indexes[1]-1;
    }

    // 看索引i所在的位置是否存在元素
    bool contain( int i ){
        assert( i + 1 >= 1 && i + 1 <= capacity );
        return reverse[i+1] != 0;
    }

    // 获取最大索引堆中索引为i的元素
    Item getItem( int i ){
        assert( contain(i) );
        return data[i+1];
    }

    // 将最大索引堆中索引为i的元素修改为newItem
    void change( int i , Item newItem ){   //这里容易看不懂,实际上是把indexes[j]传进来

        assert( contain(i) );
        i += 1;
        data[i] = newItem;

        // 找到indexes[j] = i, j表示data[i]在堆中的位置
        // 之后shiftUp(j), 再shiftDown(j)
//        for( int j = 1 ; j <= count ; j ++ )
//            if( indexes[j] == i ){
//                shiftUp(j);
//                shiftDown(j);
//                return;
//            }

        // 有了 reverse 之后,
        // 我们可以非常简单的通过reverse直接定位索引i在indexes中的位置
        shiftUp( reverse[i] );
        shiftDown( reverse[i] );
    }

};
算法总结

虽然堆排序较其它nlogn级别排序算法慢,但胜在空间复杂度为O(1)。
快排的额外空间logn是递归造成的。
自顶向下的归并排序额外空间是O(logn+n),自底向上的归并排序额外空间是O(n)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容